
Linz Step RESTful API and Event Guidelines
Github Repository

Other formats: PDF, EPUB3

Table of Contents
Linz Step RESTful API and Event Guidelines . 1

1. Introduction. 5

Conventions used in these guidelines . 6

Zalando specific information . 6

2. Principles . 7

API design principles. 7

API as a product . 7

API first . 8

3. General guidelines . 9

SHOULD follow API first principle . 9

MUST provide API specification using OpenAPI . 9

MAY provide API user manual . 10

MUST write APIs using U.S. English . 10

MUST only use durable and immutable remote references . 10

4. REST Basics - Meta information . 11

MUST contain API meta information . 11

MUST use semantic versioning . 11

MUST provide API identifiers . 12

MUST provide API audience . 13

MUST follow naming convention for hostnames (Under Construction). 14

MUST Provide Gateway Upstream Targets . 14

MAY Provide Gateway Upstream Targets for postprod env . 14

MUST provide server url . 15

MAY provide optional environment postprod for server url . 15

1

https://github.com/linz/restful-api-guidelines
zalando-guidelines.pdf
zalando-guidelines.epub

MUST follow the API endpoints design consideration . 16

5. REST Basics - Security . 18

MUST secure API . 18

MUST define and assign permissions (scopes) . 18

6. REST Basics - Data formats. 19

MUST use standard data formats. 19

MUST define a format for number and integer types . 21

MUST use standard formats for date and time properties . 22

SHOULD use standard formats for time duration and interval properties . 22

MUST use standard formats for country, language and currency properties 23

SHOULD use content negotiation, if clients may choose from different resource

representations . 23

SHOULD only use UUIDs if necessary . 23

7. REST Basics - URLs . 24

MUST be a resource and not a namespace as the basepath.. 24

SHOULD not use /api as base path . 25

MUST use URL-friendly resource identifiers . 25

MUST use kebab-case for path segments . 25

MUST use normalized paths without empty path segments and trailing slashes 25

MUST keep URLs verb-free . 26

MUST avoid actions — think about resources . 26

SHOULD define useful resources . 26

MUST use domain-specific resource names . 26

SHOULD model complete business processes . 27

MUST identify resources and sub-resources via path segments . 27

MAY expose compound keys as resource identifiers . 27

MAY consider using (non-) nested URLs . 28

SHOULD limit number of resource types . 29

SHOULD limit number of sub-resource levels . 30

MUST use camelCase (never snake_case) for query parameters . 30

MUST stick to conventional query parameters . 30

8. REST Basics - JSON payload . 30

MUST use JSON as payload data interchange format . 31

MAY pass non-JSON media types using data specific standard formats . 31

SHOULD use standard media types . 31

SHOULD pluralize array names. 32

MUST property names must be camelCase (and never snake_case). 32

SHOULD declare enum values using UPPER_SNAKE_CASE string . 32

SHOULD name date/time properties with At suffix . 32

SHOULD define maps using additionalProperties . 33

MUST use same semantics for null and absent properties . 34

2

MUST not use null for boolean properties . 34

SHOULD not use null for empty arrays . 35

MUST use common field names and semantics . 35

MUST use the common address fields . 36

MUST use the common money object. 37

9. REST Basics - HTTP requests . 39

MUST use HTTP methods correctly . 39

MUST fulfill common method properties . 44

SHOULD consider to design POST and PATCH idempotent . 45

SHOULD use secondary key for idempotent POST design . 46

MUST define collection format of header and query parameters . 46

SHOULD design simple query languages using query parameters. 47

SHOULD design complex query languages using JSON . 48

MUST document implicit response filtering . 49

10. REST Basics - HTTP status codes . 50

MUST use official HTTP status codes . 50

MUST specify success and error responses. 50

SHOULD only use most common HTTP status codes . 51

MUST use most specific HTTP status codes . 53

MUST use code 207 for batch or bulk requests . 53

MUST use code 429 with headers for rate limits . 54

MUST support problem JSON (Under Construction) . 55

MUST not expose stack traces. 56

11. REST Basics - HTTP headers. 56

MAY use standard headers . 57

SHOULD use kebab-case with uppercase separate words for HTTP headers. 57

MUST use Content-* headers correctly. 57

SHOULD use Location header instead of Content-Location header. 57

MAY use Content-Location header. 58

MAY consider to support Prefer header to handle processing preferences . 58

MAY consider to support ETag together with If-Match/If-None-Match header. 59

MAY consider to support Idempotency-Key header. 60

SHOULD use only the specified LINZ headers . 62

MUST propagate proprietary headers . 63

MUST support X-LINZ-Correlation-Id. 63

12. REST Design - Hypermedia . 64

MUST use REST maturity level 2 . 64

MAY use REST maturity level 3 - HATEOAS. 64

MUST use common hypertext controls . 65

SHOULD use simple hypertext controls for pagination and self-references 66

MUST use full, absolute URI for resource identification . 66

3

MUST not use link headers with JSON entities . 66

13. REST Design - Performance . 66

SHOULD reduce bandwidth needs and improve responsiveness . 67

SHOULD use gzip compression . 67

MAY support partial responses via filtering . 67

MAY allow optional embedding of sub-resources . 69

MUST document cacheable GET, HEAD, and POST endpoints. 70

14. REST Design - Pagination . 72

MUST support pagination (Under Construction) . 72

MAY use cursor-based pagination, prefer offset-based pagination. 72

SHOULD use pagination response page object . 73

SHOULD use pagination links where applicable. 75

15. REST Design - Compatibility . 76

MUST not break backward compatibility . 76

SHOULD prefer compatible extensions . 76

SHOULD design APIs conservatively . 77

MUST prepare clients to accept compatible API extensions . 78

MUST treat OpenAPI specification as open for extension by default . 78

SHOULD avoid versioning . 79

MUST use URL versioning . 79

MUST not use media type versioning . 79

MUST always return JSON objects as top-level data structures . 80

16. REST Design - Deprecation. 81

MUST reflect deprecation in API specifications . 81

MUST obtain approval of clients before API shut down . 81

MUST collect external partner consent on deprecation time span . 81

MUST monitor usage of deprecated API scheduled for sunset. 81

SHOULD add Deprecation and Sunset header to responses. 82

SHOULD add monitoring for Deprecation and Sunset header . 82

MUST not start using deprecated APIs . 82

17. REST Operation. 83

MUST publish OpenAPI specification . 83

SHOULD monitor API usage . 83

18. EVENT Basics - Event Types (Under Construction) . 83

MUST define events compliant with overall API guidelines . 84

MUST treat events as part of the service interface . 84

MUST make event schema available for review . 84

MUST specify and register events as event types . 84

MUST follow naming convention for event type names . 88

MUST indicate ownership of event types . 88

MUST carefully define the compatibility mode . 89

4

1. Introduction
Zalando’s software architecture centers around decoupled microservices that provide functionality
via RESTful APIs with a JSON payload. Small engineering teams own, deploy and operate these
microservices in their AWS (team) accounts. Our APIs most purely express what our systems do,
and are therefore highly valuable business assets. Designing high-quality, long-lasting APIs has
become even more critical for us since we started developing our new open platform strategy,

MUST ensure event schema conforms to OpenAPI schema object . 89

SHOULD avoid additionalProperties in event type schemas. 90

MUST use semantic versioning of event type schemas . 91

19. EVENT Basics - Event Categories . 91

MUST ensure that events conform to an event category . 91

MUST provide mandatory event metadata . 93

MUST use unique event identifiers . 95

MUST use general events to signal steps in business processes. 95

SHOULD provide explicit event ordering for general events. 96

MUST use data change events to signal mutations . 97

MUST provide explicit event ordering for data change events . 97

SHOULD use the hash partition strategy for data change events . 97

20. EVENT Design . 98

SHOULD avoid writing sensitive data to events . 98

MUST prepare event consumers for duplicate events . 98

SHOULD design for idempotent out-of-order processing . 98

MUST ensure that events define useful business resources . 99

SHOULD ensure that data change events match the APIs resources . 99

MUST maintain backwards compatibility for events . 99

Appendix A: References . 100

OpenAPI specification. 100

Publications, specifications and standards . 100

Dissertations . 101

Books. 101

Blogs . 101

Appendix B: Tooling . 101

API first integrations. 102

Support libraries . 102

Appendix C: Best practices . 102

Cursor-based pagination in RESTful APIs . 102

Optimistic locking in RESTful APIs . 104

Appendix D: Changelog. 108

Rule Changes. 109

5

which transforms Zalando from an online shop into an expansive fashion platform. Our strategy
emphasizes developing lots of public APIs for our external business partners to use via third-party
applications.

With this in mind, we’ve adopted "API First" as one of our key engineering principles. Microservices
development begins with API definition outside the code and ideally involves ample peer-review
feedback to achieve high-quality APIs. API First encompasses a set of quality-related standards and
fosters a peer review culture including a lightweight review procedure. We encourage our teams to
follow them to ensure that our APIs:

• are easy to understand and learn

• are general and abstracted from specific implementation and use cases

• are robust and easy to use

• have a common look and feel

• follow a consistent RESTful style and syntax

• are consistent with other teams’ APIs and our global architecture

Ideally, all Zalando APIs will look like the same author created them.

Conventions used in these guidelines
The requirement level keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" used in this document
(case insensitive) are to be interpreted as described in RFC 2119.

Zalando specific information
The purpose of our "RESTful API guidelines" is to define standards to successfully establish
"consistent API look and feel" quality. The API Guild (internal_link) drafted and owns this
document. Teams are responsible to fulfill these guidelines during API development and are
encouraged to contribute to guideline evolution via pull requests.

These guidelines will, to some extent, remain work in progress as our work evolves, but teams can
confidently follow and trust them.

In case guidelines are changing, following rules apply:

• existing APIs don’t have to be changed, but we recommend it

• clients of existing APIs have to cope with these APIs based on outdated rules

• new APIs have to respect the current guidelines

Furthermore you should keep in mind that once an API becomes public externally available, it has
to be re-reviewed and changed according to current guidelines - for sake of overall consistency.

6

https://www.ietf.org/rfc/rfc2119.txt
https://confluence.linz.govt.nz/display/STEP/STEP+Engineering+Design+Group

2. Principles

API design principles
Comparing SOA web service interfacing style of SOAP vs. REST, the former tend to be centered
around operations that are usually use-case specific and specialized. In contrast, REST is centered
around business (data) entities exposed as resources that are identified via URIs and can be
manipulated via standardized CRUD-like methods using different representations, and hypermedia.
RESTful APIs tend to be less use-case specific and come with less rigid client / server coupling and
are more suitable for an ecosystem of (core) services providing a platform of APIs to build diverse
new business services. We apply the RESTful web service principles to all kind of application
(micro-) service components, independently from whether they provide functionality via the
internet or intranet.

• We prefer REST-based APIs with JSON payloads

• We prefer systems to be truly RESTful [1]

An important principle for API design and usage is Postel’s Law, aka The Robustness Principle (see
also RFC 1122):

• Be liberal in what you accept, be conservative in what you send

Readings: Some interesting reads on the RESTful API design style and service architecture:

• Article: REST API Design - Resource Modeling

• Article: Richardson Maturity Model — Steps toward the glory of REST

• Book: Irresistible APIs: Designing web APIs that developers will love

• Book: REST in Practice: Hypermedia and Systems Architecture

• Book: Build APIs You Won’t Hate

• Fielding Dissertation: Architectural Styles and the Design of Network-Based Software
Architectures

API as a product
As mentioned above, Zalando is transforming from an online shop into an expansive fashion
platform comprising a rich set of products following a Software as a Platform (SaaP) model for our
business partners. As a company we want to deliver products to our (internal and external)
customers which can be consumed like a service.

Platform products provide their functionality via (public) APIs; hence, the design of our APIs should
be based on the API as a Product principle:

• Treat your API as product and act like a product owner

• Put yourself into the place of your customers; be an advocate for their needs

• Emphasize simplicity, comprehensibility, and usability of APIs to make them irresistible for

7

http://en.wikipedia.org/wiki/Robustness_principle
https://tools.ietf.org/html/rfc1122
https://www.thoughtworks.com/insights/blog/rest-api-design-resource-modeling
https://martinfowler.com/articles/richardsonMaturityModel.html
https://www.amazon.de/Irresistible-APIs-Designing-that-developers/dp/1617292559
http://www.amazon.de/REST-Practice-Hypermedia-Systems-Architecture/dp/0596805829
https://leanpub.com/build-apis-you-wont-hate
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

client engineers

• Actively improve and maintain API consistency over the long term

• Make use of customer feedback and provide service level support

Embracing 'API as a Product' facilitates a service ecosystem, which can be evolved more easily and
used to experiment quickly with new business ideas by recombining core capabilities. It makes the
difference between agile, innovative product service business built on a platform of APIs and
ordinary enterprise integration business where APIs are provided as "appendix" of existing
products to support system integration and optimised for local server-side realization.

Understand the concrete use cases of your customers and carefully check the trade-offs of your API
design variants with a product mindset. Avoid short-term implementation optimizations at the
expense of unnecessary client side obligations, and have a high attention on API quality and client
developer experience.

API as a Product is closely related to our API First principle (see next chapter) which is more
focused on how we engineer high quality APIs.

API first
API First is one of our engineering and architecture principles. In a nutshell API First requires two
aspects:

• define APIs first, before coding its implementation, using a standard specification language

• get early review feedback from peers and client developers

By defining APIs outside the code, we want to facilitate early review feedback and also a
development discipline that focus service interface design on…

• profound understanding of the domain and required functionality

• generalized business entities / resources, i.e. avoidance of use case specific APIs

• clear separation of WHAT vs. HOW concerns, i.e. abstraction from implementation aspects —
APIs should be stable even if we replace complete service implementation including its
underlying technology stack

Moreover, API definitions with standardized specification format also facilitate…

• single source of truth for the API specification; it is a crucial part of a contract between service
provider and client users

• infrastructure tooling for API discovery, API GUIs, API documents, automated quality checks

Elements of API First are also this API Guidelines and a standardized API review process as to get
early review feedback from peers and client developers. Peer review is important for us to get high
quality APIs, to enable architectural and design alignment and to supported development of client
applications decoupled from service provider engineering life cycle.

It is important to learn, that API First is not in conflict with the agile development principles that

8

https://github.com/zalando/engineering-principles

we love. Service applications should evolve incrementally — and so its APIs. Of course, our API
specification will and should evolve iteratively in different cycles; however, each starting with draft
status and early team and peer review feedback. API may change and profit from implementation
concerns and automated testing feedback. API evolution during development life cycle may include
breaking changes for not yet productive features and as long as we have aligned the changes with
the clients. Hence, API First does not mean that you must have 100% domain and requirement
understanding and can never produce code before you have defined the complete API and get it
confirmed by peer review.

On the other hand, API First obviously is in conflict with the bad practice of publishing API
definition and asking for peer review after the service integration or even the service productive
operation has started. It is crucial to request and get early feedback — as early as possible, but not
before the API changes are comprehensive with focus to the next evolution step and have a certain
quality (including API Guideline compliance), already confirmed via team internal reviews.

3. General guidelines
The titles are marked with the corresponding labels: MUST, SHOULD, MAY.

SHOULD follow API first principle
You should follow the API First Principle, more specifically:

• You should define APIs first, before coding its implementation, using OpenAPI as specification
language

• You must design your APIs consistently with these guidelines; use our API Linter Service
(internal_link) for automated rule checks.

• You must call for early review feedback from peers and client developers, and apply our
lightweight API review process (internal_link) for all APIs

MUST provide API specification using OpenAPI
We use the OpenAPI specification as standard to define API specification files. API designers are
required to provide the API specification using a single self-contained YAML file to improve
readability. You must document with OpenAPI 3.* version.

The API specification files should be subject to version control using a source code management
system - best together with the implementing sources.

You must / should publish the component external / internal API specification with the deployment
of the implementing service, and, hence, make it discoverable for the group via our API Portal
(internal_link).

Hint: A good way to explore OpenAPI 3.0 is to navigate through the OpenAPI specification mind
map and use our Swagger Plugin for IntelliJ IDEA to create your first API. To explore and
validate/evaluate existing APIs the Swagger Editor or our API Portal - (Not yet under construction)
may be a good starting point.

9

https://lilly.nonprod.enablement.awsint.linz.govt.nz/
https://lilly.nonprod.enablement.awsint.linz.govt.nz/
https://api.docs.zalando.net/howto/request-review/
https://api.docs.zalando.net/howto/request-review/
http://swagger.io/specification/
https://apis.zalando.net/
https://apis.zalando.net/
https://openapi-map.apihandyman.io/
https://openapi-map.apihandyman.io/
https://plugins.jetbrains.com/search?search=swagger+Monte
https://editor.swagger.io/
https://apis.zalando.net

Hint: We do not yet provide guidelines for GraphQL. Following our Zalando Tech Radar
(internal_link), we focus on resource oriented HTTP/REST API style (and related tooling and
infrastructure support) for general purpose peer-to-peer microservice communication. Here, we
think that GraphQL has no major benefits, but a couple of downsides compared to REST. However,
GraphQL can provide a lot of value for specific target domain problems, especially backends for
frontends (BFF) and mobile clients, and here we already make use of GraphQL as API technology
for our DX Interface Framework.

MAY provide API user manual
In addition to the API Specification, it is good practice to provide an API user manual to improve
client developer experience, especially of engineers that are less experienced in using this API. A
helpful API user manual typically describes the following API aspects:

• API scope, purpose, and use cases

• concrete examples of API usage

• edge cases, error situation details, and repair hints

• architecture context and major dependencies - including figures and sequence flows

The user manual must be published online, e.g. via confluence, Githubpages, or other. Please do not
forget to include a link to the API user manual into the API specification using the
#/externalDocs/url property.

MUST write APIs using U.S. English

MUST only use durable and immutable remote
references
Normally, API specification files must be self-contained, i.e. files should not contain references to
local or remote content, e.g. ../fragment.yaml#/element or $ref:
'https://github.com/zalando/zally/blob/master/server/src/main/resources/api/zally-
api.yaml#/schemas/LintingRequest'. The reason is, that the content referred to is in general not
durable and not immutable. As a consequence, the semantic of an API may change in unexpected
ways. (For example, the second link is already outdated due to code restructuring.)

However, you may use remote references to resources accessible by the following service URLs:

• <code><a href="https://infrastructure-api-repository.zalandoapis.com/"
class="bare">https://infrastructure-api-repository.zalandoapis.com/ (internal_link)</code>
– used to refer to user-defined, immutable API specification revisions published via the
internal API repository.

• <code><a href="https://opensource.zalando.com/restful-api-guidelines/{model.yaml}"
class="bare">https://opensource.zalando.com/restful-api-guidelines/{model.yaml}</code>
– used to refer to guideline-defined re-usable API fragments (see
<code>{model.yaml}</code> files in <a href="https://github.com/zalando/restful-api-

10

https://graphql.org/
https://techradar.zalando.net/languages/graphql.html
https://techradar.zalando.net/languages/graphql.html

guidelines/tree/main/models">restful-api-guidelines/models for details).

Hint: The formerly used remote references to the Problem API fragment (aliases
https://opensource.zalando.com/problem/ and https://zalando.github.io/problem/) are deprecated,
but still supported for compatibility (MUST support problem JSON (Under Construction) on how to
replace).

As we control these URLs, we ensure that their content is durable and immutable. This allows to
define API specifications by using fragments published via these sources, as suggested in MUST
specify success and error responses.

4. REST Basics - Meta information

MUST contain API meta information
API specifications must contain the following OpenAPI meta information to allow for API
management:

• #/info/title as (unique) identifying, functional descriptive name of the API

• #/info/version to distinguish API specifications versions following semantic rules

• #/info/description containing a proper description of the API

• #/info/contact/{name,url,email} containing the responsible team

Following OpenAPI extension properties must be provided in addition:

• #/info/x-api-id unique identifier of the API (see rule 215)

• #/info/x-audience intended target audience of the API (see rule 219)

MUST use semantic versioning
OpenAPI allows to specify the API specification version in #/info/version. To share a common
semantic of version information we expect API designers to comply to Semantic Versioning 2.0
rules 1 to 8 and 11 restricted to the format <MAJOR>.<MINOR>.<PATCH> for versions as follows:

• Increment the MAJOR version when you make incompatible API changes after having aligned
the changes with consumers,

• Increment the MINOR version when you add new functionality in a backwards-compatible
manner, and

• Optionally increment the PATCH version when you make backwards-compatible bug fixes or
editorial changes not affecting the functionality.

Additional Notes:

• Pre-release versions (rule 9) and build metadata (rule 10) must not be used in API version
information.

11

https://opensource.zalando.com/problem/
https://zalando.github.io/problem/
http://semver.org/spec/v2.0.0.html
http://semver.org#spec-item-9
http://semver.org#spec-item-10

• While patch versions are useful for fixing typos etc, API designers are free to decide whether
they increment it or not.

• API designers should consider to use API version 0.y.z (rule 4) for initial API design.

Example:

openapi: 3.0.1
info:
 title: Parcel Service API
 description: API for <...>
 version: 1.3.7
 <...>

MUST provide API identifiers
Each API specification must be provisioned with a globally unique and immutable API identifier.
The API identifier is defined in the info-block of the OpenAPI specification and must conform to the
following definition:

/info/x-api-id:
 type: string
 pattern: ^(internal|public)\-[a-zA-Z0-9]{4,}\-v\d{1,2}$
 description: |
 Mandatory globally unique and immutable API identifier. The API
 id allows to track the evolution and history of an API specification
 as a sequence of versions.

API specifications will evolve and any aspect of an OpenAPI specification may change. We require
API identifiers because we want to support API clients and providers with API lifecycle
management features, like change trackability and history or automated backward compatibility
checks. The immutable API identifier allows the identification of all API specification versions of an
API evolution. By using API semantic version information or API publishing date as order criteria
you get the version or publication history as a sequence of API specifications.

Note: While it is nice to use human readable API identifiers based on self-managed URNs, it is
recommend to stick to UUIDs to relief API designers from any urge of changing the API identifier
while evolving the API. Example:

openapi: 3.0.1
info:
 x-api-id: internal-titles-v1
 title: Parcel Service API
 description: API for <...>
 version: 1.5.8
 <...>

12

http://semver.org/#spec-item-4

MUST provide API audience
Each API must be classified with respect to the intended target audience supposed to consume the
API, to facilitate differentiated standards on APIs for discoverability, changeability, quality of design
and documentation, as well as permission granting. We differentiate the following API audience
groups with clear organisational and legal boundaries:

Note: sub-categorised as internal, partner and public this affects which subdomain deploy the API
Proxy is deployed to in Tyk Gateway

company-internal

The API consumers with this audience are restricted to applications owned by Toitū Te Whenua
Land Information New Zealand

bff-internal

Backend for front end (BFF). Used only when a single client connects to a single backend.

i.e. Only a single client can be assigned scopes to access the API.

external-public

APIs with this audience can be accessed by anyone with Internet access(unauthenticated).

Note: a smaller audience group is intentionally included in the wider group and thus does not need
to be declared additionally.

The API audience is provided as API meta information in the info-block of the OpenAPI
specification and must conform to the following specification:

/info/x-audience:
 type: string
 enum:
 - bff-internal
 - company-internal
 - external-public
 description: |
 Intended target audience of the API. Relevant for standards around
 quality of design and documentation, reviews, discoverability,
 changeability, and permission granting.

Note: Exactly one audience per API specification is allowed. For this reason a smaller audience
group is intentionally included in the wider group and thus does not need to be declared
additionally. If parts of your API have a different target audience, we recommend to split API
specifications along the target audience — even if this creates redundancies (rationale
(internal_link)).

Example:

13

https://apis.zalando.net/redirect/85ee93a3-7a78-4461-8bf1-08ffdaebcd18
https://apis.zalando.net/redirect/85ee93a3-7a78-4461-8bf1-08ffdaebcd18

openapi: 3.0.1
info:
 x-audience: company-internal
 title: Parcel Helper Service API
 description: API for <...>
 version: 1.2.4
 <...>

For details and more information on audience groups see the API Audience narrative
(internal_link).

MUST follow naming convention for hostnames (
Under Construction)
x-audience and hostnames are intricately linked. More to come.

MUST Provide Gateway Upstream Targets
Configure the API gateway upstream target, i.e., the API Provider. You must specify one upstream
target for each environment: dev, preprod, and prod.

These environments align with the enterprise domain naming conventions. For simplicity, consider
nonprod and preprod in the step to relate to dev and env in the enterprise respectively.

For each environment, the upstream target must adhere to specific URL patterns: - prod and
preprod environments must use URLs matching the pattern
https://[subdomain].awsint.linz.govt.nz(/.)?, where [subdomain] represents the respective
subdomain. - *dev environment must use URLs matching either the pattern https://httpbin.org(/
.*)? or the internal subdomain pattern.

Note: We acknowledge that because we promote design first, there is some likelihood when
creating this document the upstream target is not necessarily known. You can use a subdomain
placeholder until you have the final upstream target. e.g. https://placeholder.awsint.linz.govt.nz/

/x-gateway-upstream-targets:
 type: object
 description: |
 Mandatory extension used to determine upstream targets based on the environment.
Ensure that the URLs conform to the specified patterns for each environment.

MAY Provide Gateway Upstream Targets for postprod
env
When you have postprod environment ready, configure the API proxy with API Gateway upstream
target for postprod environment

14

https://apis.zalando.net/redirect/85ee93a3-7a78-4461-8bf1-08ffdaebcd18
https://apis.zalando.net/redirect/85ee93a3-7a78-4461-8bf1-08ffdaebcd18
https://httpbin.org(/.*
https://httpbin.org(/.*
https://placeholder.awsint.linz.govt.nz/

Example:

openapi: 3.0.1
info:
 x-audience: company-internal
 title: Parcel Helper Service API
x-gateway-upstream-targets:
 prod: https://api.enablement.awsint.linz.govt.nz/
 dev: https://httpbin.org/anything
 env: https://api.preprod.enablement.awsint.linz.govt.nz/extra/path
 postprod: https://api.postprod.landonline.govt.nz/v1/auth
<...>

MUST provide server url
Configure the API gateway server url for your resource, ensure variables are configured if
templating. URL is dependent on audience, external-public must have public prepended. i.e.
public.api.

Usually, a pluralised collection of resource instances is provided at the end of the server URL. The
special case of a resource singleton must be modeled as a collection with cardinality 1 including
definition of maxItems = minItems = 1 for the returned array structure to make the cardinality
constraint explicit.

Exception: the pseudo identifier self used to specify a resource endpoint where the resource
identifier is provided by authorization information (see MUST identify resources and sub-resources
via path segments).

/servers:
 type: object
 description: |
 Mandatory field used to determine url based on environment.

MAY provide optional environment postprod for server
url
We have introduced an optional environment called postprod for API proxies in Tyk i.e.
api.postprod.landonline.govt.nz Specify this environment for the server URL when you have
postprod env ready

Example:

openapi: 3.0.1
info:
 x-audience: company-internal
 title: Parcel Helper Service API

15

servers:
 - url: "https://api.landonline.govt.nz/v12/myresources"
 - url: "https://api{env}.landonline.govt.nz/v12/myresources"
 variables:
 env:
 enum:
 - .dev
 - .env
 - .postprod
 default: .dev
<...>

MUST follow the API endpoints design consideration
We secure our endpoints through JWT token validation You can choose to have a single default
scope for each of the endpoints for the resource (API) that you are exposing through the gateway.
Or you can have a separate scope for an endpoint

Limitation with Tyk while validating for scopes at endpoint level There is a limitation with Tyk
while validating for scopes at endpoint level and we would need support from teams to work
around that limitation Scope validation at endpoint level fails if we have two endpoints let’s say like
below

/requests/v1/status (GET)- protected by scope requests:read-status

/requests/v1/{requestId} (GET) (where requestId is string) - protected by scope requests:get-
request-details

Now both these endpoints are protected by different scopes, but Tyk can’t correctly validate the
scope in this case for the same operation and would allow access to /requests/v1/status even when
the requests presents a JWT token with scope requests:get-request-details

Reason for that is:

Tyk uses regular expression in Go to validate a path against a scope but it doesn’t support a
negative look-ahead. Basically, Tyk is not able to achieve this

Allow access to /any-string-value but not /status for the token with a scope requests:get-request-
details

Workaround:

So teams would have to be conscious to not have a string path parameter and another endpoint
with a string in it at the same depth.

Workarounds Options are * Use an Integer based id, instead of a string * Attempt to create a
subresource at a separate depth * Consider the subresource as a separate resource and hence a
separate specification.

Example of an invalid path combination:

16

openapi: 3.0.1
info:
 x-audience: company-internal
 title: Parcel Helper Service API
x-gateway-upstream-targets:
 prod: 'http://httpbin.org/'
 dev: 'http://httpbin.org/'
 env: 'http://httpbin.org/'
paths:
 '/requests/status/{requestId}':
 parameters:
 - name: requestId
 in: path
 description: ID of anything to return
 required: true
 schema:
 type: string
 get:
 security:
 - BearerAuth:
 - 'test:A'
 /requests/status/astring:
 get:
 security:
 - BearerAuth:
 - 'test:B'
<...>

Example of valid path combinations:

openapi: 3.0.1
info:
 x-audience: company-internal
 title: Parcel Helper Service API
x-gateway-upstream-targets:
 prod: 'http://httpbin.org/'
 dev: 'http://httpbin.org/'
 env: 'http://httpbin.org/'
paths:
 '/requests/status/{requestId}':
 parameters:
 - name: requestId
 in: path
 description: ID of anything to return
 required: true
 schema:
 type: string
 get:
 security:

17

 - BearerAuth:
 - 'test:A'
 /requests/status/anotherstring/astring:
 get:
 security:
 - BearerAuth:
 - 'test:B'
 /requests/notstatus/astring:
 get:
 security:
 - BearerAuth:
 - 'test:C'
<...>

5. REST Basics - Security
Any non public API’s must be secured; that is API’s exposed via https://api.landonline.govt.nz/. This
will be imply x-audience has been set to company-internal or bff-internal and scopes are set
correctly.

MUST secure API
Non public APIs are protected using JWT Access tokens provided by the platform IAM token service
(Currently Keycloak) and must be armed with authentication and authorization.

As part of the API definition you must specify that the API is protected using http typed bearer
security schemes defined in the Open API Bearer Authentication it is based on OAuth2.0 RFC 6750
defining the standard header Auhorization: Bearer <token>. The following code snippet shows how
to define the bearer security scheme.

components:
 securitySchemes:
 BearerAuth:
 type: http
 scheme: bearer
 bearerFormat: JWT

MUST define and assign permissions (scopes)
At LINZ (STEP) every API must define and set security permissions, also known as "scopes" A
decision was made that we would use resource based scopes, so this implies each resource MUST
define at least one scope. A scope is a way to limit the type of access that a client has to a particular
resource or service by the user who’s using the app. Scopes MAY be reused between API’s if there is
a logical service/boundary level (e.g., search, fees) but at least one scope must be defined per
resource. (If in doubt check with Security)

18

https://api.landonline.govt.nz/
https://swagger.io/docs/specification/authentication/bearer-authentication/
https://tools.ietf.org/html/rfc6750

As of the time of writing, only a single default scope is definable per API (Resource) — (Kapua is in
the progress of defing endpoint level scopes at what this means)

The format for scopes follows the regex pattern [a-zA-Z\-]{4,15}:default. This means the name of
the scope should consist of 4 to 15 alphanumeric characters (or hyphens), followed by :default. The
:default part indicates that these are the default permissions for the respective service.

Scopes are defined as part of the security requirement object at the root level of your API
definition, allowing for a default scope that applies to all operations within the API. Please note that
currently, only the root security can be set in our system.

Example:

components:
 securitySchemes:
 BearerAuth:
 type: http
 scheme: bearer
 bearerFormat: JWT
security:
- BearerAuth: ['search:default']
paths:
 /registeredclients-only-information:
 get:
 summary: Provides information about ...
 Accessible by any user; permissions needed.

In the above example, the default scope search:default is applied at the root level of the API,
allowing access to search operations for any client who has this scope on behalf of the user.

It’s critical to understand that any new scope must be created/configured in the Identity Provider
(IDP) before it can be used by a resource server. Also, the relevant clients must be registered to get
that scope. This process is documented in Granting client scope to a client.

Remember that the resource owner squad holds the authority to approve a client registering to a
scope. Therefore, always ensure their approval before proceeding with scope creation.

For audiences like the external-public, there’s no requirement to define a specific scope. If a single
service needs to serve multiple audiences, it’s often best to create separate API specifications to
manage access control effectively. Refer to MUST provide audience for more details.

6. REST Basics - Data formats

MUST use standard data formats
Open API (based on JSON Schema Validation vocabulary) defines formats from ISO and IETF
standards for date/time, integers/numbers and binary data. You must use these formats, whenever
applicable:

19

https://github.com/linz/landonline-auth/blob/master/docs/how-to-add-new-client-scope.md#adding-a-new-scope
https://github.com/linz/landonline-auth/blob/master/docs/how-to-add-new-client-scope.md#adding-a-new-scope
https://github.com/linz/landonline-auth/blob/master/docs/how-to-add-new-client-scope.md
https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.1.0.md#data-types
https://tools.ietf.org/html/draft-bhutton-json-schema-validation-00#section-7.3

OpenAPI
type

OpenAPI
format

Specification Example

integer int32 4 byte signed integer between -231 and
231-1

7721071004

integer int64 8 byte signed integer between -263 and
263-1

772107100456824

number float binary32 single precision decimal
number — see IEEE 754-2008/ISO
60559:2011

3.1415927

number double binary64 double precision decimal
number — see IEEE 754-2008/ISO
60559:2011

3.141592653589793

string byte base64url encoded byte following RFC
7493 Section 4.4

"VA=="

string binary base64url encoded byte sequence
following RFC 7493 Section 4.4

"VGVzdA=="

string date RFC 3339 internet profile — subset of
ISO 8601

"2019-07-30"

string date-
time

RFC 3339 internet profile — subset of
ISO 8601

"2019-07-30T06:43:40.252Z"

string time RFC 3339 internet profile — subset of
ISO 8601

"06:43:40.252Z"

string duration RFC 3339 internet profile — subset of
ISO 8601

"P1DT30H4S"

string period RFC 3339 internet profile — subset of
ISO 8601

"2019-07-30T06:43:40.252Z/PT3H"

string password "secret"

string email RFC 5322 "example@zalando.de"

string idn-
email

RFC 6531 "hello@bücher.example"

string hostname RFC 1034 "www.zalando.de"

string idn-
hostname

RFC 5890 "bücher.example"

string ipv4 RFC 2673 "104.75.173.179"

string ipv6 RFC 2673 "2600:1401:2::8a"

string uri RFC 3986 "https://www.zalando.de/"

string uri-
referenc
e

RFC 3986 "/clothing/"

string uri-
template

RFC 6570 "/users/{id}"

20

https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/IEEE_754
https://tools.ietf.org/html/rfc7493#section-4.4
https://tools.ietf.org/html/rfc7493#section-4.4
https://tools.ietf.org/html/rfc7493#section-4.4
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339#ref-ISO8601
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339#ref-ISO8601
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339#ref-ISO8601
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339#ref-ISO8601
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339#ref-ISO8601
https://tools.ietf.org/html/rfc5322
mailto:example@zalando.de
https://tools.ietf.org/html/rfc6531
https://tools.ietf.org/html/rfc1034
https://tools.ietf.org/html/rfc5890
https://tools.ietf.org/html/rfc2673
https://tools.ietf.org/html/rfc2673
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc6570

OpenAPI
type

OpenAPI
format

Specification Example

string iri RFC 3987 "https://bücher.example/"

string iri-
referenc
e

RFC 3987 "/damenbekleidung-jacken-mäntel/"

string uuid RFC 4122 "e2ab873e-b295-11e9-9c02-…"

string json-
pointer

RFC 6901 "/items/0/id"

string relative
-json
-pointer

Relative JSON pointers "1/id"

Note: Formats bigint and decimal have been added to the OpenAPI defined formats — see also
MUST define a format for number and integer types and MUST use standard formats for date and
time properties below.

We add further OpenAPI formats that are useful especially in an e-commerce environment e.g.
language code, country code, and currency based other ISO and IETF standards. You must use these
formats, whenever applicable:

OpenAPI
type

format Specification Example

string iso-639 two letter language code — see ISO
639-1

"en"

string bcp47 multi letter language tag — see BCP 47.
It is a compatible extension of ISO 639-
1 optionally with additional
information for language usage, like
region, variant, script.

"en-DE"

string iso-3166 two letter country code — see ISO
3166-1 alpha-2

"GB" Hint: It is "GB", not "UK", even
though "UK" has seen some use at
Zalando.

string iso-4217 three letter currency code — see ISO
4217

"EUR"

string gtin-13 Global Trade Item Number — see GTIN "5710798389878"

string regex regular expressions as defined in
ECMA 262

"^[a-z0-9]+$"

Remark: Please note that this list of standard data formats is not exhaustive and everyone is
encouraged to propose additions.

MUST define a format for number and integer types
You must always provide one of the formats int32, int64, or float, double, when you define an API

21

https://tools.ietf.org/html/rfc3987
https://tools.ietf.org/html/rfc3987
https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc6901
https://tools.ietf.org/html/draft-handrews-relative-json-pointer
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://tools.ietf.org/html/bcp47
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://en.wikipedia.org/wiki/ISO_4217
https://en.wikipedia.org/wiki/ISO_4217
https://en.wikipedia.org/wiki/Global_Trade_Item_Number
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

property of JSON type number or integer.

However we have removed bigint from integer and decimal types as accepted formats, in these
instances, there could be some incorrect guessing of the precision.

e.g. specific language types; in Java, for instance, the number type with decimal format would
normally have been translated into BigDecimal, this is now unclear, integer type with int32 format
will translate to int or Integer Java types.

MUST encode binary data in base64url

You may expose binary data. You must use a standard media type and data format, if
applicable — see Rule 168. If no standard is available, you must define the binary data as string
typed property with binary format using base64url encoding — as also described in MUST use
standard data formats.

MUST use standard formats for date and time
properties
As a specific case of MUST use standard data formats, you must use the string typed formats date,
date-time, time, duration, or period for the definition of date and time properties. The formats are
based on the standard RFC 3339 internet profile -- a subset of ISO 8601

Exception: For passing date/time information via standard protocol headers, HTTP RFC 7231
requires to follow the date and time specification used by the Internet Message Format RFC 5322.

As defined by the standard, time zone offset may be used, however, we recommend to only use
times based on UTC without local offsets. For example 2015-05-28T14:07:17Z rather than 2015-05-
28T14:07:17+00:00. From experience we have learned that zone offsets are not easy to understand
and often not correctly handled. Note also that zone offsets are different from local times which
may include daylight saving time. When it comes to storage, all dates should be consistently stored
in UTC without a zone offset. Localization should be done locally by the services that provide user
interfaces, if required.

Hint: We discourage using numerical timestamps. It typically creates issues with precision, e.g.
whether to represent a timestamp as 1460062925, 1460062925000 or 1460062925.000. Date strings,
though more verbose and requiring more effort to parse, avoid this ambiguity.

SHOULD use standard formats for time duration and
interval properties
Schema based JSON properties that are by design durations and intervals could be strings
formatted as defined by ISO 8601 (Appendix A of RFC 3339 contains a grammar for durations).

22

https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339#ref-ISO8601
https://tools.ietf.org/html/rfc7231#section-7.1.1.1
https://tools.ietf.org/html/rfc5322
https://en.wikipedia.org/wiki/ISO_8601
https://tools.ietf.org/html/rfc3339#appendix-A

MUST use standard formats for country, language and
currency properties
As a specific case of MUST use standard data formats you must use the following standard formats:

• Country codes: ISO 3166-1-alpha2 two letter country codes indicated via OpenAPI format iso-
3166

• Language codes: ISO 639-1 two letter language codes indicated via OpenAPI format iso-639

• Language variant tags: BCP 47 multi letter language tag indicated via OpenAPI format bcp47. (It
is a compatible extension of ISO 639-1 with additional optional information for language usage,
like region, variant, script)

• Currency codes: ISO 4217 three letter currency codes indicated via OpenAPI format iso-4217

SHOULD use content negotiation, if clients may choose
from different resource representations
In some situations the API supports serving different representations of a specific resource (at the
same URL) e.g. JSON, PDF, TEXT, or HTML representations for an invoice resource. You should use
content negotiation to support clients specifying via the standard HTTP headers Accept, Accept-
Language, Accept-Encoding which representation is best suited for their use case, for example, which
language of a document, representation / content format, or content encoding. You SHOULD use
standard media types like application/json or application/pdf for defining the content format in
the Accept header.

SHOULD only use UUIDs if necessary
Generating IDs can be a scaling problem in high frequency and near real time use cases. UUIDs
solve this problem, as they can be generated without collisions in a distributed, non-coordinated
way and without additional server round trips.

However, they also come with some disadvantages:

• pure technical key without meaning; not ready for naming or name scope conventions that
might be helpful for pragmatic reasons, e.g. we learned to use names for product attributes,
instead of UUIDs

• less usable, because…

◦ cannot be memorized and easily communicated by humans

◦ harder to use in debugging and logging analysis

◦ less convenient for consumer facing usage

• quite long: readable representation requires 36 characters and comes with higher memory and
bandwidth consumption

• not ordered along their creation history and no indication of used id volume

• may be in conflict with additional backward compatibility support of legacy ids

23

https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://tools.ietf.org/html/bcp47
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/ISO_4217
https://en.wikipedia.org/wiki/Content_negotiation
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-5.3.5
https://tools.ietf.org/html/rfc7231#section-5.3.5
https://tools.ietf.org/html/rfc7231#section-5.3.4
https://tools.ietf.org/html/rfc7231#section-5.3.2

UUIDs should be avoided when not needed for large scale id generation. Instead, for instance,
server side support with id generation can be preferred (POST on id resource, followed by
idempotent PUT on entity resource). Usage of UUIDs is especially discouraged as primary keys of
master and configuration data, like brand-ids or attribute-ids which have low id volume but
widespread steering functionality.

Please be aware that sequential, strictly monotonically increasing numeric identifiers may reveal
critical, confidential business information, like order volume, to non-privileged clients.

In any case, we should always use string rather than number type for identifiers. This gives us
more flexibility to evolve the identifier naming scheme. Accordingly, if used as identifiers, UUIDs
should not be qualified using a format property.

Hint: Usually, random UUID is used - see UUID version 4 in RFC 4122. Though UUID version 1 also
contains leading timestamps it is not reflected by its lexicographic sorting. This deficit is addressed
by ULID (Universally Unique Lexicographically Sortable Identifier). You may favour ULID instead of
UUID, for instance, for pagination use cases ordered along creation time.

7. REST Basics - URLs
Guidelines for naming and designing resource paths and query parameters.

MUST be a resource and not a namespace as the
basepath.
In the realm of RESTful API design, it’s crucial to position a resource directly as the API’s base URI.
This setup allows a client to engage with a primary resource without the need for extra path
segments. This strategy is in line with URI standards, fostering a clean and user-friendly URI
structure that enhances both usability and maintainability.

Take, for example, an API for a bookstore. A root level resource could be "books". The base URI of
your API (e.g., https://api.landonline.govt.nz/) should grant access to this "books" resource. This is
achieved accomplished by appending the resource name to the base URI (e.g.,
https://api.landonline.govt.nz/v1/books).

Namespacing should be avoided as it obscures the resource and can lead to the resource being
improperly linked to a service where it doesn’t belong. For instance, a poor use of namespacing
would be https://api.landonline.govt.nz/bookstore/v1/books. Here, "bookstore" acts as a
namespace, which is unnecessary and can lead to confusion. The resource "books" is what should
be directly accessible from the base URI.

This rule does not applied to BFF’s which generally have a BFF name as a namespace as the
basepath.

• MUST provide API audience

See also

24

#post
#put
https://tools.ietf.org/html/rfc4122
https://github.com/alizain/ulid
https://api.landonline.govt.nz/
https://api.landonline.govt.nz/v1/books
https://api.landonline.govt.nz/bookstore/v1/books

• MUST provide server url

• MUST identify resources and sub-resources via path segments

SHOULD not use /api as base path
In most cases, all resources provided by a service are part of the public API, and therefore should
be made available under the root "/" base path.

If the service should also support non-public, internal APIs — for specific operational support
functions, for example — we encourage you to maintain two different API specifications and
provide API audience. For both APIs, you should not use /api as base path.

MUST use URL-friendly resource identifiers
To simplify encoding of resource IDs in URLs they must match the regex [a-zA-Z0-9:._\-/]*.
Resource IDs only consist of ASCII strings using letters, numbers, underscore, minus, colon, period,
and - on rare occasions - slash.

Note: slashes are only allowed to build and signal resource identifiers consisting of compound keys.

Note: to prevent ambiguities of unnormalized paths resource identifiers must never be empty.
Consequently, support of empty strings for path parameters is forbidden.

MUST use kebab-case for path segments
Path segments are restricted to ASCII kebab-case strings matching regex ^[a-z][a-z\-0-9]*$. The
first character must be a lower case letter, and subsequent characters can be a letter, or a dash(-),
or a number.

Example:

/shipment-orders/{shipment-order-id}

Hint: kebab-case applies to concrete path segments and not necessarily the names of path
parameters.

MUST use normalized paths without empty path
segments and trailing slashes
You must not specify paths with duplicate or trailing slashes, e.g. /customers//addresses or
/customers/. As a consequence, you must also not specify or use path variables with empty string
values.

Reasoning: Non standard paths have no clear semantics. As a result, behavior for non standard
paths varies between different HTTP infrastructure components and libraries. This may leads to
ambiguous and unexpected results during request handling and monitoring.

25

We recommend to implement services robust against clients not following this rule. All services
should normalize request paths before processing by removing duplicate and trailing slashes.
Hence, the following requests should refer to the same resource:

GET /orders/{order-id}
GET /orders/{order-id}/
GET /orders//{order-id}

Note: path normalization is not supported by all framework out-of-the-box. Services are required to
support at least the normalized path while rejecting all alternatives paths, if failing to deliver the
same resource.

MUST keep URLs verb-free
The API describes resources, so the only place where actions should appear is in the HTTP methods.
In URLs, use only nouns. Instead of thinking of actions (verbs), it’s often helpful to think about
putting a message in a letter box: e.g., instead of having the verb cancel in the url, think of sending a
message to cancel an order to the cancellations letter box on the server side.

MUST avoid actions — think about resources
REST is all about your resources, so consider the domain entities that take part in web service
interaction, and aim to model your API around these using the standard HTTP methods as
operation indicators. For instance, if an application has to lock articles explicitly so that only one
user may edit them, create an article lock with PUT or POST instead of using a lock action.

Request:

PUT /article-locks/{article-id}

The added benefit is that you already have a service for browsing and filtering article locks.

SHOULD define useful resources
As a rule of thumb resources should be defined to cover 90% of all its client’s use cases. A useful
resource should contain as much information as necessary, but as little as possible. A great way to
support the last 10% is to allow clients to specify their needs for more/less information by
supporting filtering and embedding.

MUST use domain-specific resource names
API resources represent elements of the application’s domain model. Using domain-specific
nomenclature for resource names helps developers to understand the functionality and basic
semantics of your resources. It also reduces the need for further documentation outside the API
definition. For example, "sales-order-items" is superior to "order-items" in that it clearly indicates

26

https://en.wikipedia.org/wiki/URI_normalization
#put
#post

which business object it represents. Along these lines, "items" is too general.

SHOULD model complete business processes
An API should contain the complete business processes containing all resources representing the
process. This enables clients to understand the business process, foster a consistent design of the
business process, allow for synergies from description and implementation perspective, and
eliminates implicit invisible dependencies between APIs.

In addition, it prevents services from being designed as thin wrappers around databases, which
normally tends to shift business logic to the clients.

MUST identify resources and sub-resources via path
segments
Some API resources may contain or reference sub-resources. Embedded sub-resources, which are
not top-level resources, are parts of a higher-level resource and cannot be used outside of its scope.
Sub-resources should be referenced by their name and identifier in the path segments as follows:

/resources/{resource-id}/sub-resources/{sub-resource-id}

In order to improve the consumer experience, you should aim for intuitively understandable URLs,
where each sub-path is a valid reference to a resource or a set of resources. For instance, if
/partners/{partner-id}/addresses/{address-id} is valid, then, in principle, also /partners/{partner-
id}/addresses, /partners/{partner-id} and /partners must be valid. Examples of concrete url paths:

/shopping-carts/de:1681e6b88ec1/items/1
/shopping-carts/de:1681e6b88ec1
/content/images/9cacb4d8
/content/images

Note: resource identifiers may be build of multiple other resource identifiers (see MAY expose
compound keys as resource identifiers).

Exception: In some situations the resource identifier is not passed as a path segment but via the
authorization information, e.g. an authorization token or session cookie. Here, it is reasonable to
use self as pseudo-identifier path segment. For instance, you may define /employees/self or
/employees/self/personal-details as resource paths —  and may additionally define endpoints that
support identifier passing in the resource path, like define /employees/{empl-id} or
/employees/{empl-id}/personal-details.

MAY expose compound keys as resource identifiers
If a resource is best identified by a compound key consisting of multiple other resource identifiers, it
is allowed to reuse the compound key in its natural form containing slashes instead of technical

27

resource identifier in the resource path without violating the above rule MUST identify resources
and sub-resources via path segments as follows:

/resources/{compound-key-1}[delim-1]...[delim-n-1]{compound-key-n}

Example paths:

/shopping-carts/{country}/{session-id}
/shopping-carts/{country}/{session-id}/items/{item-id}
/api-specifications/{docker-image-id}/apis/{path}/{file-name}
/api-specifications/{repository-name}/{artifact-name}:{tag}
/article-size-advices/{sku}/{sales-channel}

Warning: Exposing a compound key as described above limits ability to evolve the structure of the
resource identifier as it is no longer opaque.

To compensate for this drawback, APIs must apply a compound key abstraction consistently in all
requests and responses parameters and attributes allowing consumers to treat these as technical
resource identifier replacement. The use of independent compound key components must be
limited to search and creation requests, as follows:

compound key components passed as independent search query parameters
GET /article-size-advices?skus=sku-1,sku-2&sales_channel_id=sid-1
=> { "items": [{ "id": "id-1", ... },{ "id": "id-2", ... }] }

opaque technical resource identifier passed as path parameter
GET /article-size-advices/id-1
=> { "id": "id-1", "sku": "sku-1", "sales_channel_id": "sid-1", "size": ... }

compound key components passed as mandatory request fields
POST /article-size-advices { "sku": "sku-1", "sales_channel_id": "sid-1", "size": ...
}
=> { "id": "id-1", "sku": "sku-1", "sales_channel_id": "sid-1", "size": ... }

Where id-1 is representing the opaque provision of the compound key sku-1/sid-1 as technical
resource identifier.

Remark: A compound key component may itself be used as another resource identifier providing
another resource endpoint, e.g /article-size-advices/{sku}.

MAY consider using (non-) nested URLs
If a sub-resource is only accessible via its parent resource and may not exist without parent
resource, consider using a nested URL structure, for instance:

28

/shoping-carts/de/1681e6b88ec1/cart-items/1

However, if the resource can be accessed directly via its unique id, then the API should expose it as
a top-level resource. For example, customer has a collection for sales orders; however, sales orders
have globally unique id and some services may choose to access the orders directly, for instance:

/customers/1637asikzec1
/sales-orders/5273gh3k525a

SHOULD limit number of resource types
To keep maintenance and service evolution manageable, we should follow "functional
segmentation" and "separation of concern" design principles and do not mix different business
functionalities in same API definition. In practice this means that the number of resource types
exposed via an API should be limited. In this context a resource type is defined as a set of highly
related resources such as a collection, its members and any direct sub-resources.

For example, the resources below would be counted as three resource types, one for customers, one
for the addresses, and one for the customers' related addresses:

/customers
/customers/{id}
/customers/{id}/preferences
/customers/{id}/addresses
/customers/{id}/addresses/{addr}
/addresses
/addresses/{addr}

Note that:

• We consider /customers/id/preferences part of the /customers resource type because it has a
one-to-one relation to the customer without an additional identifier.

• We consider /customers and /customers/id/addresses as separate resource types because
/customers/id/addresses/{addr} also exists with an additional identifier for the address.

• We consider /addresses and /customers/id/addresses as separate resource types because there’s
no reliable way to be sure they are the same.

Given this definition, our experience is that well defined APIs involve no more than 4 to 8 resource
types. There may be exceptions with more complex business domains that require more resources,
but you should first check if you can split them into separate subdomains with distinct APIs.

Nevertheless one API should hold all necessary resources to model complete business processes
helping clients to understand these flows.

29

#id
#id
#id
#id

SHOULD limit number of sub-resource levels
There are main resources (with root url paths) and sub-resources (or nested resources with non-
root urls paths). Use sub-resources if their life cycle is (loosely) coupled to the main resource, i.e. the
main resource works as collection resource of the subresource entities. You should use ⇐ 3 sub-
resource (nesting) levels — more levels increase API complexity and url path length. (Remember,
some popular web browsers do not support URLs of more than 2000 characters.)

MUST use camelCase (never snake_case) for query
parameters
See also MUST property names must be camelCase (and never snake_case).

MUST stick to conventional query parameters
If you provide query support for searching, sorting, filtering, and paginating, you must stick to the
following naming conventions:

• q: default query parameter, e.g. used by browser tab completion; should have an entity specific
alias, e.g. sku.

• sort: comma-separated list of fields (as defined by MUST define collection format of header and
query parameters) to define the sort order. To indicate sorting direction, fields may be prefixed
with + (ascending) or - (descending), e.g. /sales-orders?sort=+id.

• fields: field name expression to retrieve only a subset of fields of a resource. See MAY support
partial responses via filtering below.

• embed: field name expression to expand or embedded sub-entities, e.g. inside of an article entity,
expand silhouette code into the silhouette object. Implementing embed correctly is difficult, so do
it with care. See MAY allow optional embedding of sub-resources below.

• offset: numeric offset of the first element provided on a page representing a collection request.
See REST Design - Pagination section below.

• cursor: an opaque pointer to a page, never to be inspected or constructed by clients. It usually
(encrypted) encodes the page position, i.e. the identifier of the first or last page element, the
pagination direction, and the applied query filters to recreate the collection. See Cursor-based
pagination in RESTful APIs or REST Design - Pagination section below.

• limit: client suggested limit to restrict the number of entries on a page. See REST Design -
Pagination section below.

8. REST Basics - JSON payload
These guidelines provides recommendations for defining JSON data at Zalando. JSON here refers to
RFC 7159 (which updates RFC 4627), the "application/json" media type and custom JSON media
types defined for APIs. The guidelines clarifies some specific cases to allow Zalando JSON data to
have an idiomatic form across teams and services.

30

#q
#sort
#fields
#embed
#embed
#offset
#cursor
#limit
https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/rfc4627

MUST use JSON as payload data interchange format
Use JSON (RFC 7159) to represent structured (resource) data passed with HTTP requests and
responses as body payload. The JSON payload must use a JSON object as top-level data structure (if
possible) to allow for future extension. This also applies to collection resources, where you ad-hoc
would use an array — see also MUST always return JSON objects as top-level data structures.

Additionally, the JSON payload must comply to the more restrictive Internet JSON (RFC 7493),
particularly

• Section 2.1 on encoding of characters, and

• Section 2.3 on object constraints.

As a consequence, a JSON payload must

• use UTF-8 encoding

• consist of valid Unicode strings, i.e. must not contain non-characters or surrogates, and

• contain only unique member names (no duplicate names).

MAY pass non-JSON media types using data specific
standard formats
Non-JSON media types may be supported, if you stick to a business object specific standard format
for the payload data, for instance, image data format (JPG, PNG, GIF), document format (PDF, DOC,
ODF, PPT), or archive format (TAR, ZIP).

Generic structured data interchange formats other than JSON (e.g. XML, CSV) may be provided, but
only additionally to JSON as default format using content negotiation, for specific use cases where
clients may not interpret the payload structure.

SHOULD use standard media types
You should use standard media types (defined in media type registry of Internet Assigned Numbers
Authority (IANA)) as content-type (or accept) header information. More specifically, for JSON
payload you should use the standard media type application/json (or application/problem+json for
MUST support problem JSON (Under Construction)).

You should avoid using custom media types like application/x.zalando.article+json. Custom media
types beginning with x bring no advantage compared to the standard media type for JSON, and
make automated processing more difficult.

Exception: Custom media type should be only used in situations where you need to provide API
endpoint versioning (with content negotiation) due to incompatible changes.

31

https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/rfc7493
https://tools.ietf.org/html/rfc7493#section-2.1
https://tools.ietf.org/html/rfc7493#section-2.3
https://tools.ietf.org/html/rfc7493#section-2.1
https://tools.ietf.org/html/rfc7493#section-2.1
https://tools.ietf.org/html/rfc7493#section-2.1
https://tools.ietf.org/html/rfc7493#section-2.3
https://www.iana.org/assignments/media-types/media-types.xhtml

SHOULD pluralize array names
Names of arrays should be pluralized to indicate that they contain multiple values. This implies in
turn that object names should be singular.

MUST property names must be camelCase (and never
snake_case)
Property names are restricted to ASCII camelCase strings matching regex [a-z][a-z0-9]*(?:[A-Z0-
9]+[a-z0-9]*)*. The first character must be a lower case letter and subsequent words with
Capitalised first letters.

Examples:

customerNumber, salesOrderNumber, billingAddress

Rationale: No established industry standard exists, while many popular Internet companies prefer
snake_case: e.g. GitHub, Stack Exchange, Twitter. Others, like Google and Amazon, use both - not
only camelCase. However the predominate languages in LINZ are Typescript and Kotlin both of
which use camelCasing, keeping these aligned is sensible.

SHOULD declare enum values using
UPPER_SNAKE_CASE string
Enumerations should be represented as string typed OpenAPI definitions of request parameters or
model properties. Enum values (using enum) need to consistently use the upper-snake case format,
e.g. VALUE or YET_ANOTHER_VALUE. This approach allows to clearly distinguish values from properties
or other elements.

Exception: This rule does not apply for case sensitive values sourced from outside API definition
scope, e.g. for language codes from ISO 639-1, or when declaring possible values for a rule 137 [sort
parameter].

SHOULD name date/time properties with At suffix
Dates and date-time properties should end with At to distinguish them from boolean properties
which otherwise would have very similar or even identical names:

• createdAt rather than created,

• modifiedAt rather than modified,

• occurredAt rather than occurred, and

• returnedAt rather than returned.

32

https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes

SHOULD define maps using additionalProperties
A "map" here is a mapping from string keys to some other type. In JSON this is represented as an
object, the key-value pairs being represented by property names and property values. In OpenAPI
schema (as well as in JSON schema) they should be represented using additionalProperties with a
schema defining the value type. Such an object should normally have no other defined properties.

The map keys don’t count as property names in the sense of rule 118, and can follow whatever
format is natural for their domain. Please document this in the description of the map object’s
schema.

Here is an example for such a map definition (the translations property):

components:
 schemas:
 Message:
 description:
 A message together with translations in several languages.
 type: object
 properties:
 message_key:
 type: string
 description: The message key.
 translations:
 description:
 The translations of this message into several languages.
 The keys are [IETF BCP-47 language
tags](https://tools.ietf.org/html/bcp47).
 type: object
 additionalProperties:
 type: string
 description:
 the translation of this message into the language identified by the key.

An actual JSON object described by this might then look like this:

{ "message_key": "color",
 "translations": {
 "de": "Farbe",
 "en-US": "color",
 "en-GB": "colour",
 "eo": "koloro",
 "nl": "kleur"
 }
}

33

MUST use same semantics for null and absent
properties
OpenAPI 3.x allows to mark properties as required and as nullable to specify whether properties
may be absent ({}) or null ({"example":null}). If a property is defined to be not required and
nullable (see 2nd row in Table below), this rule demands that both cases must be handled in the
exact same manner by specification.

The following table shows all combinations and whether the examples are valid:

required nullable {} {"example":null}

true true ✗ No ✔ Yes

false true ✔ Yes ✔ Yes

true false ✗ No ✗ No

false false ✔ Yes ✗ No

While API designers and implementers may be tempted to assign different semantics to both cases,
we explicitly decide against that option, because we think that any gain in expressiveness is far
outweighed by the risk of clients not understanding and implementing the subtle differences
incorrectly.

As an example, an API that provides the ability for different users to coordinate on a time schedule,
e.g. a meeting, may have a resource for options in which every user has to make a choice. The
difference between undecided and decided against any of the options could be modeled as absent
and null respectively. It would be safer to express the null case with a dedicated Null object, e.g. {}
compared to {"id":"42"}.

Moreover, many major libraries have somewhere between little to no support for a null/absent
pattern (see Gson, Moshi, Jackson, JSON-B). Especially strongly-typed languages suffer from this
since a new composite type is required to express the third state. Nullable Option/Optional/Maybe
types could be used but having nullable references of these types completely contradicts their
purpose.

The only exception to this rule is JSON Merge Patch RFC 7396) which uses null to explicitly indicate
property deletion while absent properties are ignored, i.e. not modified.

MUST not use null for boolean properties
Schema based JSON properties that are by design booleans must not be presented as nulls. A
boolean is essentially a closed enumeration of two values, true and false. If the content has a
meaningful null value, we strongly prefer to replace the boolean with enumeration of named
values or statuses - for example accepted_terms_and_conditions with enumeration values YES, NO,
UNDEFINED.

34

https://en.wikipedia.org/wiki/Null_object_pattern
https://stackoverflow.com/questions/48465005/gson-distinguish-null-value-field-and-missing-field
https://github.com/square/moshi#borrows-from-gson
https://github.com/FasterXML/jackson-databind/issues/578
https://developer.ibm.com/articles/j-javaee8-json-binding-3/
https://tools.ietf.org/html/rfc7396

SHOULD not use null for empty arrays
Empty array values can unambiguously be represented as the empty list, [].

MUST use common field names and semantics
You must use common field names and semantics whenever applicable. Common fields are
idiomatic, create consistency across APIs and support common understanding for API consumers.

We define the following common field names:

• id: the identity of the object. If used, IDs may be opaque strings or numbers. IDs are unique
within some documented context, are stable and don’t change for a given object once assigned,
and are never recycled cross entities.

• xyz_id: an attribute within one object holding the identifier of another object must use a name
that corresponds to the type of the referenced object or the relationship to the referenced object
followed by _id (e.g. partner_id not partner_number, or parent_node_id for the reference to a
parent node from a child node, even if both have the type Node).

• ETag: the ETag of an embedded sub-resource. It typically is used to carry the ETag for subsequent
PUT/PATCH calls (see ETags in result entities).

Further common fields are defined in SHOULD name date/time properties with At suffix. The
following guidelines define standard objects and fields:

• SHOULD use pagination response page object

• MUST use the common address fields

• MUST use the common money object

Example JSON schema:

tree_node:
 type: object
 properties:
 id:
 description: the identifier of this node
 type: string
 parent_node_id:
 description: the identifier of the parent node of this node
 type: string
 created_at:
 description: when got this node created
 type: string
 format: 'date-time'
 modified_at:
 description: when got this node last updated
 type: string
 format: 'date-time'

35

#id
#xyz_id
https://tools.ietf.org/html/rfc7232#section-2.3
https://tools.ietf.org/html/rfc7232#section-2.3
#put
#patch

 example:
 id: '123435'
 parent_node_id: '534321'
 created_at: '2017-04-12T23:20:50.52Z'
 modified_at: '2017-04-12T23:20:50.52Z'

MUST use the common address fields
Address structures play a role in different business and use-case contexts, including country
variances. All attributes that relate to address information must follow the naming and semantics
defined below.

addressee:
 description: a (natural or legal) person that gets addressed
 type: object
 properties:
 salutation:
 description: |
 a salutation and/or title used for personal contacts to some
 addressee; not to be confused with the gender information!
 type: string
 example: Mr
 first_name:
 description: |
 given name(s) or first name(s) of a person; may also include the
 middle names.
 type: string
 example: Hans Dieter
 last_name:
 description: |
 family name(s) or surname(s) of a person
 type: string
 example: Mustermann
 business_name:
 description: |
 company name of the business organization. Used when a business is
 the actual addressee; for personal shipments to office addresses, use
 `care_of` instead.
 type: string
 example: Consulting Services GmbH
 required:
 - first_name
 - last_name

address:
 description:
 an address of a location/destination
 type: object
 properties:

36

 care_of:
 description: |
 (aka c/o) the person that resides at the address, if different from
 addressee. E.g. used when sending a personal parcel to the
 office /someone else's home where the addressee resides temporarily
 type: string
 example: Consulting Services GmbH
 street:
 description: |
 the full street address including house number and street name
 type: string
 example: Schönhauser Allee 103
 additional:
 description: |
 further details like building name, suite, apartment number, etc.
 type: string
 example: 2. Hinterhof rechts
 city:
 description: |
 name of the city / locality
 type: string
 example: Berlin
 zip:
 description: |
 zip code or postal code
 type: string
 example: 14265
 country_code:
 description: |
 the country code according to
 [iso-3166-1-alpha-2](https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2)
 type: string
 example: DE
 required:
 - street
 - city
 - zip
 - country_code

Grouping and cardinality of fields in specific data types may vary based on the specific use case
(e.g. combining addressee and address fields into a single type when modeling an address label vs
distinct addressee and address types when modeling users and their addresses).

MUST use the common money object
Use the following common money structure:

Money:
 type: object

37

 properties:
 amount:
 type: number
 description: >
 The amount describes unit and subunit of the currency in a single value,
 where the integer part (digits before the decimal point) is for the
 major unit and fractional part (digits after the decimal point) is for
 the minor unit.
 format: decimal
 example: 99.95
 currency:
 type: string
 description: 3 letter currency code as defined by ISO-4217
 format: iso-4217
 example: EUR
 required:
 - amount
 - currency

APIs are encouraged to include a reference to the global schema for Money.

SalesOrder:
 properties:
 grand_total:
 $ref: 'https://opensource.zalando.com/restful-api-guidelines/models/money-
1.0.0.yaml#/Money'

Please note that APIs have to treat Money as a closed data type, i.e. it’s not meant to be used in an
inheritance hierarchy. That means the following usage is not allowed:

{
 "amount": 19.99,
 "currency": "EUR",
 "discounted_amount": 9.99
}

Cons

• Violates the Liskov Substitution Principle

• Breaks existing library support, e.g. Jackson Datatype Money

• Less flexible since both amounts are coupled together, e.g. mixed currencies are impossible

A better approach is to favor composition over inheritance:

{
 "price": {

38

https://en.wikipedia.org/wiki/Liskov_substitution_principle
https://github.com/zalando/jackson-datatype-money
https://en.wikipedia.org/wiki/Composition_over_inheritance

 "amount": 19.99,
 "currency": "EUR"
 },
 "discounted_price": {
 "amount": 9.99,
 "currency": "EUR"
 }
}

Pros

• No inheritance, hence no issue with the substitution principle

• Makes use of existing library support

• No coupling, i.e. mixed currencies is an option

• Prices are now self-describing, atomic values

Notes

Please be aware that some business cases (e.g. transactions in Bitcoin) call for a higher precision, so
applications must be prepared to accept values with unlimited precision, unless explicitly stated
otherwise in the API specification.

Examples for correct representations (in EUR):

• 42.20 or 42.2 = 42 Euros, 20 Cent

• 0.23 = 23 Cent

• 42.0 or 42 = 42 Euros

• 1024.42 = 1024 Euros, 42 Cent

• 1024.4225 = 1024 Euros, 42.25 Cent

Make sure that you don’t convert the "amount" field to float / double types when implementing this
interface in a specific language or when doing calculations. Otherwise, you might lose precision.
Instead, use exact formats like Java’s BigDecimal. See Stack Overflow for more info.

Some JSON parsers (NodeJS’s, for example) convert numbers to floats by default. After discussing
the pros and cons we’ve decided on "decimal" as our amount format. It is not a standard OpenAPI
format, but should help us to avoid parsing numbers as float / doubles.

9. REST Basics - HTTP requests

MUST use HTTP methods correctly
Be compliant with the standardized HTTP method semantics (see HTTP/1 RFC-7230 and RFC-7230
updates from 2014) summarized as follows:

39

https://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html
http://stackoverflow.com/a/3730040/342852
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7231

GET

GET requests are used to read either a single or a collection resource.

• GET requests for individual resources will usually generate a 404 if the resource does not exist

• GET requests for collection resources may return either 200 (if the collection is empty) or 404 (if
the collection is missing)

• GET requests must NOT have a request body payload (see GET with body)

Note: GET requests on collection resources should provide sufficient filter and REST Design -
Pagination mechanisms.

GET with body payload

APIs sometimes face the problem, that they have to provide extensive structured request
information with GET, that may conflict with the size limits of clients, load-balancers, and servers.
As we require APIs to be standard conform (request body payload in GET must be ignored on server
side), API designers have to check the following two options:

1. GET with URL encoded query parameters: when it is possible to encode the request information
in query parameters, respecting the usual size limits of clients, gateways, and servers, this
should be the first choice. The request information can either be provided via multiple query
parameters or by a single structured URL encoded string.

2. POST with body payload content: when a GET with URL encoded query parameters is not possible,
a POST request with body payload must be used, and explicitly documented with a hint like in
the following example:

paths:
 /products:
 post:
 description: >
 [GET with body payload](https://opensource.zalando.com/restful-api-
guidelines/#get-with-body) - no resources created:
 Returns all products matching the query passed as request input payload.
 requestBody:
 required: true
 content:
 ...

Note: It is no option to encode the lengthy structured request information using header
parameters. From a conceptual point of view, the semantic of an operation should always be
expressed by the resource names, as well as the involved path and query parameters. In other
words by everything that goes into the URL. Request headers are reserved for general context
information (see SHOULD use only the specified LINZ headers). In addition, size limits on query
parameters and headers are not reliable and depend on clients, gateways, server, and actual
settings. Thus, switching to headers does not solve the original problem.

Hint: As GET with body is used to transport extensive query parameters, the cursor cannot any

40

#get
#get
#status-code-404
#get
#status-code-200
#status-code-404
#get
#get-with-body
#get
#get
#get
#get
#post
#get
#post
#get-with-body
#cursor

longer be used to encode the query filters in case of cursor-based pagination. As a consequence, it is
best practice to transport the query filters in the body payload, while using pagination links
containing the cursor that is only encoding the page position and direction. To protect the
pagination sequence the cursor may contain a hash over all applied query filters (See also SHOULD
use pagination links where applicable).

PUT

PUT requests are used to update (and sometimes to create) entire resources – single or collection
resources. The semantic is best described as "please put the enclosed representation at the resource
mentioned by the URL, replacing any existing resource.".

• PUT requests are usually applied to single resources, and not to collection resources, as this
would imply replacing the entire collection

• PUT requests are usually robust against non-existence of resources by implicitly creating the
resource before updating

• on successful PUT requests, the server will replace the entire resource addressed by the URL
with the representation passed in the payload (subsequent reads will deliver the same payload,
plus possibly server-generated fields like modified_at)

• successful PUT requests will usually generate 200 or 204 (if the resource was updated – with or
without actual content returned), and 201 (if the resource was created)

Important: It is good practice to prefer POST over PUT for creation of (at least top-level) resources.
This leaves the resource identifier management under control of the service and not the client, and
focuses PUT on its usage for updates. However, in situations where all resource attributes including
the identifier are under control of the client as input for the resource creation you should use PUT
and pass the resource identifier via the URL path. Putting the same resource twice is required to be
idempotent and to result in the same single resource instance (see MUST fulfill common method
properties) without data duplication in case of repetition.

Hint: To prevent unnoticed concurrent updates and duplicate creations when using PUT, you MAY
consider to support ETag together with If-Match/If-None-Match header to allow the server to react on
stricter demands that expose conflicts and prevent lost updates. See also Optimistic locking in
RESTful APIs for details and options.

POST

POST requests are idiomatically used to create single resources on a collection resource endpoint,
but other semantics on single resources endpoint are equally possible. The semantic for collection
endpoints is best described as "please add the enclosed representation to the collection resource
identified by the URL". The semantic for single resource endpoints is best described as "please
execute the given well specified request on the resource identified by the URL".

• on a successful POST request, the server will create one or multiple new resources and provide
their URI/URLs in the response

• successful POST requests will usually generate 200 (if resources have been updated), 201 (if
resources have been created), 202 (if the request was accepted but has not been finished yet),

41

#cursor
#cursor
#put
#put
#put
#put
#put
#status-code-200
#status-code-204
#status-code-201
#post
#put
#put
#put
#put
#post
#post
#post
#status-code-200
#status-code-201
#status-code-202

and exceptionally 204 with Location header (if the actual resource is not returned).

Note: By using POST to create resources the resource ID must not be passed as request input date by
the client, but created and maintained by the service and returned with the response payload.

Apart from resource creation, POST should be also used for scenarios that cannot be covered by the
other methods sufficiently. However, in such cases make sure to document the fact that POST is used
as a workaround (see e.g. GET with body).

Hint: Posting the same resource twice is not required to be idempotent (check MUST fulfill
common method properties) and may result in multiple resources. However, you SHOULD
consider to design POST and PATCH idempotent to prevent this.

PATCH

PATCH method extends HTTP via RFC-5789 standard to update parts of the resource objects where
e.g. in contrast to PUT only a specific subset of resource fields should be changed. The set of changes
is represented in a format called a patch document passed as payload and identified by a specific
media type. The semantic is best described as "please change the resource identified by the URL
according to my patch document". The syntax and semantics of the patch document is not defined in
RFC-5789 and must be described in the API specification by using specific media types.

• PATCH requests are usually applied to single resources as patching entire collection is challenging

• PATCH requests are usually not robust against non-existence of resource instances

• on successful PATCH requests, the server will update parts of the resource addressed by the URL
as defined by the change request in the payload

• successful PATCH requests will usually generate 200 or 204 (if resources have been updated with
or without updated content returned)

Note: since implementing PATCH correctly is a bit tricky, we strongly suggest to choose one and only
one of the following patterns per endpoint (unless forced by a backwards compatible change). In
preference order:

1. use PUT with complete objects to update a resource as long as feasible (i.e. do not use PATCH at
all).

2. use PATCH with JSON Merge Patch standard, a specialized media type application/merge-
patch+json for partial resource representation to update parts of resource objects.

3. use PATCH with JSON Patch standard, a specialized media type application/json-patch+json that
includes instructions on how to change the resource.

4. use POST (with a proper description of what is happening) instead of PATCH, if the request does
not modify the resource in a way defined by the semantics of the standard media types above.

In practice JSON Merge Patch quickly turns out to be too limited, especially when trying to update
single objects in large collections (as part of the resource). In this case JSON Patch is more powerful
while still showing readable patch requests (see also JSON patch vs. merge). JSON Patch supports
changing of array elements identified via its index, but not via (key) fields of the elements as
typically needed for collections.

42

#status-code-204
https://tools.ietf.org/html/rfc7231#section-7.1.2
#post
#post
#post
#get-with-body
#patch
https://tools.ietf.org/html/rfc5789
#put
https://tools.ietf.org/html/rfc5789
#patch
#patch
#patch
#patch
#status-code-200
#status-code-204
#patch
#put
#patch
#patch
https://tools.ietf.org/html/rfc7396
#patch
https://tools.ietf.org/html/rfc6902
#post
#patch
https://tools.ietf.org/html/rfc7396
https://tools.ietf.org/html/rfc6902
http://erosb.github.io/post/json-patch-vs-merge-patch

Note: Patching the same resource twice is not required to be idempotent (check MUST fulfill
common method properties) and may result in a changing result. However, you SHOULD consider
to design POST and PATCH idempotent to prevent this.

Hint: To prevent unnoticed concurrent updates when using PATCH you MAY consider to support
ETag together with If-Match/If-None-Match header to allow the server to react on stricter demands
that expose conflicts and prevent lost updates. See Optimistic locking in RESTful APIs and SHOULD
consider to design POST and PATCH idempotent for details and options.

DELETE

DELETE requests are used to delete resources. The semantic is best described as "please delete the
resource identified by the URL".

• DELETE requests are usually applied to single resources, not on collection resources, as this
would imply deleting the entire collection.

• DELETE request can be applied to multiple resources at once using query parameters on the
collection resource (see DELETE with query parameters).

• successful DELETE requests will usually generate 200 (if the deleted resource is returned) or 204
(if no content is returned).

• failed DELETE requests will usually generate 404 (if the resource cannot be found) or 410 (if the
resource was already deleted before).

Important: After deleting a resource with DELETE, a GET request on the resource is expected to either
return 404 (not found) or 410 (gone) depending on how the resource is represented after deletion.
Under no circumstances the resource must be accessible after this operation on its endpoint.

DELETE with query parameters

DELETE request can have query parameters. Query parameters should be used as filter parameters
on a resource and not for passing context information to control the operation behavior.

DELETE /resources?param1=value1¶m2=value2...¶mN=valueN

Note: When providing DELETE with query parameters, API designers must carefully document the
behavior in case of (partial) failures to manage client expectations properly.

The response status code of DELETE with query parameters requests should be similar to usual
DELETE requests. In addition, it may return the status code 207 using a payload describing the
operation results (see MUST use code 207 for batch or bulk requests for details).

DELETE with body payload

In rare cases DELETE may require additional information, that cannot be classified as filter
parameters and thus should be transported via request body payload, to perform the operation.
Since RFC-7231 states, that DELETE has an undefined semantic for payloads, we recommend to utilize
POST. In this case the POST endpoint must be documented with the hint DELETE with body analog to

43

#patch
#delete
#delete
#delete
#delete
#status-code-200
#status-code-204
#delete
#status-code-404
#status-code-410
#delete
#get
#status-code-404
#status-code-410
#delete
#delete
#delete
#delete
#status-code-207
#delete
https://tools.ietf.org/html/rfc7231#section-4.3.5
#delete
#post
#delete-with-body

how it is defined for GET with body. The response status code of DELETE with body requests should be
similar to usual DELETE requests.

HEAD

HEAD requests are used to retrieve the header information of single resources and resource
collections.

• HEAD has exactly the same semantics as GET, but returns headers only, no body.

Hint: HEAD is particular useful to efficiently lookup whether large resources or collection resources
have been updated in conjunction with the ETag-header.

OPTIONS

OPTIONS requests are used to inspect the available operations (HTTP methods) of a given endpoint.

• OPTIONS responses usually either return a comma separated list of methods in the Allow header
or as a structured list of link templates

Note: OPTIONS is rarely implemented, though it could be used to self-describe the full functionality
of a resource.

MUST fulfill common method properties
Request methods in RESTful services can be…

• safe - the operation semantic is defined to be read-only, meaning it must not have intended side
effects, i.e. changes, to the server state.

• idempotent - the operation has the same intended effect on the server state, independently
whether it is executed once or multiple times. Note: this does not require that the operation is
returning the same response or status code.

• cacheable - to indicate that responses are allowed to be stored for future reuse. In general,
requests to safe methods are cacheable, if it does not require a current or authoritative
response from the server.

Note: The above definitions, of intended (side) effect allows the server to provide additional state
changing behavior as logging, accounting, pre- fetching, etc. However, these actual effects and state
changes, must not be intended by the operation so that it can be held accountable.

Method implementations must fulfill the following basic properties according to RFC 7231:

Method Safe Idempotent Cacheable

GET ✔ Yes ✔ Yes ✔ Yes

HEAD ✔ Yes ✔ Yes ✔ Yes

44

#get-with-body
#delete-with-body
#delete
#head
#head
#get
#head
https://tools.ietf.org/html/rfc7232#section-2.3
#options
#options
#options
https://tools.ietf.org/html/rfc7231#section-4.2.1
https://tools.ietf.org/html/rfc7231#section-4.2.2
https://tools.ietf.org/html/rfc7231#section-4.2.3
https://tools.ietf.org/html/rfc7231
#get
#head

Method Safe Idempotent Cacheable

POST ✗ No ⚠️ No, but SHOULD consider to
design POST and PATCH idempotent

⚠️ May, but only if specific POST
endpoint is safe. Hint: not
supported by most caches.

PUT ✗ No ✔ Yes ✗ No

PATCH ✗ No ⚠️ No, but SHOULD consider to
design POST and PATCH idempotent

✗ No

DELETE ✗ No ✔ Yes ✗ No

OPTIONS ✔ Yes ✔ Yes ✗ No

TRACE ✔ Yes ✔ Yes ✗ No

Note: MUST document cacheable GET, HEAD, and POST endpoints.

SHOULD consider to design POST and PATCH idempotent
In many cases it is helpful or even necessary to design POST and PATCH idempotent for clients to
expose conflicts and prevent resource duplicate (a.k.a. zombie resources) or lost updates, e.g. if
same resources may be created or changed in parallel or multiple times. To design an idempotent
API endpoint owners should consider to apply one of the following three patterns.

• A resource specific conditional key provided via If-Match header in the request. The key is in
general a meta information of the resource, e.g. a hash or version number, often stored with it. It
allows to detect concurrent creations and updates to ensure idempotent behavior (see MAY
consider to support ETag together with If-Match/If-None-Match header).

• A resource specific secondary key provided as resource property in the request body. The
secondary key is stored permanently in the resource. It allows to ensure idempotent behavior by
looking up the unique secondary key in case of multiple independent resource creations from
different clients (see SHOULD use secondary key for idempotent POST design).

• A client specific idempotency key provided via Idempotency-Key header in the request. The key
is not part of the resource but stored temporarily pointing to the original response to ensure
idempotent behavior when retrying a request (see MAY consider to support Idempotency-Key
header).

Note: While conditional key and secondary key are focused on handling concurrent requests, the
idempotency key is focused on providing the exact same responses, which is even a stronger
requirement than the idempotency defined above. It can be combined with the two other patterns.

To decide, which pattern is suitable for your use case, please consult the following table showing
the major properties of each pattern:

Conditional Key Secondary Key Idempotency
Key

Applicable with PATCH POST POST/PATCH

HTTP Standard ✔ Yes ✗ No ✗ No

45

#post
#post
#put
#patch
#delete
#options
#trace
#post
#patch
#230
#patch
#post
#post
#patch

Conditional Key Secondary Key Idempotency
Key

Prevents duplicate (zombie) resources ✔ Yes ✔ Yes ✗ No

Prevents concurrent lost updates ✔ Yes ✗ No ✗ No

Supports safe retries ✔ Yes ✔ Yes ✔ Yes

Supports exact same response ✗ No ✗ No ✔ Yes

Can be inspected (by intermediaries) ✔ Yes ✗ No ✔ Yes

Usable without previous GET ✗ No ✔ Yes ✔ Yes

Note: The patterns applicable to PATCH can be applied in the same way to PUT and DELETE providing
the same properties.

If you mainly aim to support safe retries, we suggest to apply conditional key and secondary key
pattern before the Idempotency Key pattern.

SHOULD use secondary key for idempotent POST design
The most important pattern to design POST idempotent for creation is to introduce a resource
specific secondary key provided in the request body, to eliminate the problem of duplicate (a.k.a
zombie) resources.

The secondary key is stored permanently in the resource as alternate key or combined key (if
consisting of multiple properties) guarded by a uniqueness constraint enforced server-side, that is
visible when reading the resource. The best and often naturally existing candidate is a unique
foreign key, that points to another resource having one-on-one relationship with the newly created
resource, e.g. a parent process identifier.

A good example here for a secondary key is the shopping cart ID in an order resource.

Note: When using the secondary key pattern without Idempotency-Key all subsequent retries should
fail with status code 409 (conflict). We suggest to avoid 200 here unless you make sure, that the
delivered resource is the original one implementing a well defined behavior. Using 204 without
content would be a similar well defined option.

MUST define collection format of header and query
parameters
Header and query parameters allow to provide a collection of values, either by providing a comma-
separated list of values or by repeating the parameter multiple times with different values as
follows:

46

#get
#patch
#put
#delete
#post
#230
#status-code-409
#status-code-200
#status-code-204

Parameter
Type

Comma-separated Values Multiple Parameters Standard

Header Header: value1,value2 Header: value1, Header: value2 RFC 7230
Section 3.2.2

Query ?param=value1,value2 ?param=value1¶m=value2 RFC 6570
Section 3.2.8

As OpenAPI does not support both schemas at once, an API specification must explicitly define the
collection format to guide consumers as follows:

Parameter
Type

Comma-separated Values Multiple Parameters

Header style: simple, explode: false not allowed (see RFC 7230 Section 3.2.2)

Query style: form, explode: false style: form, explode: true

When choosing the collection format, take into account the tool support, the escaping of special
characters and the maximal URL length.

SHOULD design simple query languages using query
parameters
We prefer the use of query parameters to describe resource-specific query languages for the
majority of APIs because it’s native to HTTP, easy to extend and has excellent implementation
support in HTTP clients and web frameworks.

Query parameters should have the following aspects specified:

• Reference to corresponding property, if any

• Value range, e.g. inclusive vs. exclusive

• Comparison semantics (equals, less than, greater than, etc)

• Implications when combined with other queries, e.g. and vs. or

How query parameters are named and used is up to individual API designers. The following
examples should serve as ideas:

• name=Zalando, to query for elements based on property equality

• age=5, to query for elements based on logical properties

◦ Assuming that elements don’t actually have an age but rather a birthday

• max_length=5, based on upper and lower bounds (min and max)

• shorter_than=5, using terminology specific e.g. to length

• created_before=2019-07-17 or not_modified_since=2019-07-17

◦ Using terminology specific e.g. to time: before, after, since and until

47

https://tools.ietf.org/html/rfc7230#section-3.2.2
https://tools.ietf.org/html/rfc7230#section-3.2.2
https://tools.ietf.org/html/rfc6570#section-3.2.8
https://tools.ietf.org/html/rfc6570#section-3.2.8
https://tools.ietf.org/html/rfc7230#section-3.2.2

We don’t advocate for or against certain names because in the end APIs should be free to choose
the terminology that fits their domain the best.

SHOULD design complex query languages using JSON
Minimalistic query languages based on query parameters are suitable for simple use cases with a
small set of available filters that are combined in one way and one way only (e.g. and semantics).
Simple query languages are generally preferred over complex ones.

Some APIs will have a need for sophisticated and more complex query languages. Dominant
examples are APIs around search (incl. faceting) and product catalogs.

Aspects that set those APIs apart from the rest include but are not limited to:

• Unusual high number of available filters

• Dynamic filters, due to a dynamic and extensible resource model

• Free choice of operators, e.g. and, or and not

APIs that qualify for a specific, complex query language are encouraged to use nested JSON data
structures and define them using OpenAPI directly. The provides the following benefits:

• Data structures are easy to use for clients

◦ No special library support necessary

◦ No need for string concatenation or manual escaping

• Data structures are easy to use for servers

◦ No special tokenizers needed

◦ Semantics are attached to data structures rather than text tokens

• Consistent with other HTTP methods

• API is defined in OpenAPI completely

◦ No external documents or grammars needed

◦ Existing means are familiar to everyone

JSON-specific rules and most certainly needs to make use of the GET-with-body pattern.

Example

The following JSON document should serve as an idea how a structured query might look like.

{
 "and": {
 "name": {
 "match": "Alice"
 },
 "age": {
 "or": {

48

 "range": {
 ">": 25,
 "<=": 50
 },
 "=": 65
 }
 }
 }
}

Feel free to also get some inspiration from:

• Elastic Search: Query DSL

• GraphQL: Queries

MUST document implicit response filtering
Sometimes certain collection resources or queries will not list all the possible elements they have,
but only those for which the current client is authorized to access.

Implicit filtering could be done on:

• the collection of resources being returned on a GET request

• the fields returned for the detail information of the resource

In such cases, the fact that implicit filtering is applied must be documented in the API
specification’s endpoint description. Consider caching aspects when implicit filtering is provided.
Example:

If an employee of the company Foo accesses one of our business-to-business service and performs a
GET /business-partners, it must, for legal reasons, not display any other business partner that is not
owned or contractually managed by her/his company. It should never see that we are doing
business also with company Bar.

Response as seen from a consumer working at FOO:

{
 "items": [
 { "name": "Foo Performance" },
 { "name": "Foo Sport" },
 { "name": "Foo Signature" }
]
}

Response as seen from a consumer working at BAR:

{

49

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://graphql.org/learn/queries/
#get
#get

 "items": [
 { "name": "Bar Classics" },
 { "name": "Bar pour Elle" }
]
}

The API Specification should then specify something like this:

paths:
 /business-partner:
 get:
 description: >-
 Get the list of registered business partner.
 Only the business partners to which you have access to are returned.

10. REST Basics - HTTP status codes

MUST use official HTTP status codes
You must only use official HTTP status codes consistently with their intended semantics. Official
HTTP status codes are defined via RFC standards and registered in the IANA Status Code Registry.
Main RFC standards are RFC7231 - HTTP/1.1: Semantics (or RFC7235 - HTTP/1.1: Authentication) and
RFC 6585 - HTTP: Additional Status Codes (and there are upcoming new ones, e.g. draft legally-
restricted-status). An overview on the official error codes provides Wikipedia: HTTP status codes
(which also lists some unofficial status codes, e.g. defined by popular web servers like Nginx, that
we do not suggest to use).

MUST specify success and error responses
APIs should define the functional, business view and abstract from implementation aspects.
Success and error responses are a vital part to define how an API is used correctly.

Therefore, you must define all success and service specific error responses in your API
specification. Both are part of the interface definition and provide important information for
service clients to handle standard as well as exceptional situations. Error code response
descriptions should provide information about the specific conditions that lead to the error,
especially if these conditions can be changed by how the endpoint is used by the clients.

API designers should also think about a troubleshooting board as part of the associated online API
documentation. It provides information and handling guidance on application-specific errors and is
referenced via links from the API specification. This can reduce service support tasks and
contribute to service client and provider performance.

Exception: Standard errors, especially for client side error codes like 401 (unauthenticated), 403
(unauthorized) or 404 (not found) that can be inferred straightforwardly from the specific endpoint
definition need not to be individually defined. Instead you can combine multiple error response

50

https://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml
https://tools.ietf.org/html/rfc7231#section-6
https://tools.ietf.org/html/rfc7235#page-6
https://tools.ietf.org/html/rfc6585
https://tools.ietf.org/html/draft-tbray-http-legally-restricted-status-05
https://tools.ietf.org/html/draft-tbray-http-legally-restricted-status-05
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

specifications with the default pattern below. However, you should not use it and explicitly define
the error code as soon as it provides endpoint specific indications for clients of how to avoid calling
the endpoint in the wrong way, or be prepared to react on specific error situation.

responses:
 ...
 default:
 description: error occurred - see status code and problem object for more
information.
 content:
 "application/problem+json":
 schema:
 $ref: 'https://opensource.zalando.com/restful-api-guidelines/models/problem-
1.0.1.yaml#/Problem'

SHOULD only use most common HTTP status codes
The most commonly used codes are best understood and listed below as subset of the official HTTP
status codes and consistent with their semantics in the RFCs. We avoid less commonly used codes
that easily create misconceptions due to less familiar semantics and API specific interpretations.

Important: As long as your HTTP status code usage is well covered by the semantic defined here,
you should not describe it to avoid an overload with common sense information and the risk of
inconsistent definitions. Only if the HTTP status code is not in the list below or its usage requires
additional information aside the well defined semantic, the API specification must provide a clear
description of the HTTP status code in the response.

Success codes

Code Meaning Methods

200 OK - this is the standard success response <all>

201 Created - Returned on successful entity creation. You are free to
return either an empty response or the created resource in
conjunction with the Location header. (More details found in the
[standard-headers].) Always set the Location header.

POST, PUT

202 Accepted - The request was successful and will be processed
asynchronously.

POST, PUT, PATCH,
DELETE

204 No content - There is no response body. PUT, PATCH, DELETE

207 Multi-Status - The response body contains multiple status
informations for different parts of a batch/bulk request (see MUST
use code 207 for batch or bulk requests).

POST, (DELETE)

Redirection codes

51

#status-code-200
#status-code-201
#post
#put
#status-code-202
#post
#put
#patch
#delete
#status-code-204
#put
#patch
#delete
#status-code-207
#post
#delete

Code Meaning Methods

301 Moved Permanently - This and all future requests should be directed
to the given URI.

<all>

303 See Other - The response to the request can be found under another
URI using a GET method.

POST, PUT, PATCH,
DELETE

304 Not Modified - indicates that a conditional GET or HEAD request
would have resulted in 200 response if it were not for the fact that
the condition evaluated to false, i.e. resource has not been modified
since the date or version passed via request headers If-Modified-
Since or If-None-Match.

GET, HEAD

Client side error codes

Code Meaning Methods

400 Bad request - unspecific client error indicating that the server
cannot process the request due to something that is perceived to be
a client error (e.g. malformed request syntax, invalid request).
Should also be delivered in case of input payload fails business logic
/ semantic validation (instead of using status code 422).

<all>

401 Unauthorized - actually "Unauthenticated": credentials are not valid
for the target resource. User must log in.

<all>

403 Forbidden - the user is not authorized to use this resource. <all>

404 Not found - the resource is not found. <all>

405 Method Not Allowed - the method is not supported, see OPTIONS. <all>

406 Not Acceptable - resource can only generate content not acceptable
according to the Accept headers sent in the request.

<all>

408 Request timeout - the server times out waiting for the resource. <all>

409 Conflict - request cannot be completed due to conflict with the
current state of the target resource. For instance, in situations where
two clients try to create the same resource or if there are
concurrent, conflicting updates.

POST, PUT, PATCH,
DELETE

410 Gone - resource does not exist any longer, e.g. when accessing a
resource that has intentionally been deleted.

<all>

412 Precondition Failed - returned for conditional requests, e.g. If-Match
if the condition failed. Used for optimistic locking.

PUT, PATCH, DELETE

415 Unsupported Media Type - e.g. clients sends request body without
content type.

POST, PUT, PATCH,
DELETE

423 Locked - Pessimistic locking, e.g. processing states. PUT, PATCH, DELETE

52

#status-code-301
#status-code-303
#get
#post
#put
#patch
#delete
#status-code-304
#get
#head
#status-code-400
#status-code-401
#status-code-403
#status-code-404
#status-code-405
#options
#status-code-406
#status-code-408
#status-code-409
#post
#put
#patch
#delete
#status-code-410
#status-code-412
https://tools.ietf.org/html/rfc7232#section-3.1
#put
#patch
#delete
#status-code-415
#post
#put
#patch
#delete
#status-code-423
#put
#patch
#delete

Code Meaning Methods

428 Precondition Required - server requires the request to be
conditional, e.g. to make sure that the "lost update problem" is
avoided (see MAY consider to support Prefer header to handle
processing preferences).

<all>

429 Too many requests - the client does not consider rate limiting and
sent too many requests (see MUST use code 429 with headers for
rate limits).

<all>

Server side error codes:

Code Meaning Methods

500 Internal Server Error - a generic error indication for an unexpected
server execution problem (here, client retry may be sensible)

<all>

501 Not Implemented - server cannot fulfill the request (usually implies
future availability, e.g. new feature).

<all>

503 Service Unavailable - service is (temporarily) not available (e.g. if a
required component or downstream service is not
available) — client retry may be sensible. If possible, the service
should indicate how long the client should wait by setting the Retry-
After header.

<all>

MUST use most specific HTTP status codes
You must use the most specific HTTP status code when returning information about your request
processing status or error situations.

MUST use code 207 for batch or bulk requests
Some APIs are required to provide either batch or bulk requests using POST for performance
reasons, i.e. for communication and processing efficiency. In this case services may be in need to
signal multiple response codes for each part of a batch or bulk request. As HTTP does not provide
proper guidance for handling batch/bulk requests and responses, we herewith define the following
approach:

• A batch or bulk request always responds with HTTP status code 207 unless a non-item-specific
failure occurs.

• A batch or bulk request may return 4xx/5xx status codes, if the failure is non-item-specific and
cannot be restricted to individual items of the batch or bulk request, e.g. in case of overload
situations or general service failures.

• A batch or bulk response with status code 207 always returns as payload a multi-status
response containing item specific status and/or monitoring information for each part of the
batch or bulk request.

53

#status-code-428
#status-code-429
#status-code-500
#status-code-501
#status-code-503
https://tools.ietf.org/html/rfc7231#section-7.1.3
https://tools.ietf.org/html/rfc7231#section-7.1.3
#post
#status-code-207
#client-side-error-codes
#server-side-error-codes
#status-code-207

Note: These rules apply even in the case that processing of all individual parts fail or each part is
executed asynchronously!

The rules are intended to allow clients to act on batch and bulk responses in a consistent way by
inspecting the individual results. We explicitly reject the option to apply 200 for a completely
successful batch as proposed in Nakadi’s POST /event-types/{name}/events as short cut without
inspecting the result, as we want to avoid risks and expect clients to handle partial batch failures
anyway.

The bulk or batch response may look as follows:

BatchOrBulkResponse:
 description: batch response object.
 type: object
 properties:
 items:
 type: array
 items:
 type: object
 properties:
 id:
 description: Identifier of batch or bulk request item.
 type: string
 status:
 description: >
 Response status value. A number or enum describing
 the execution status of the batch or bulk request items.
 type: string
 enum: [...]
 description:
 description: >
 Human readable status description and containing additional
 context information about failures etc.
 type: string
 required: [id, status]

Note: while a batch defines a collection of requests triggering independent processes, a bulk defines
a collection of independent resources created or updated together in one request. With respect to
response processing this distinction normally does not matter.

MUST use code 429 with headers for rate limits
APIs that wish to manage the request rate of clients must use the 429 (Too Many Requests) response
code, if the client exceeded the request rate (see RFC 6585). Such responses must also contain
header information providing further details to the client. There are two approaches a service can
take for header information:

• Return a Retry-After header indicating how long the client ought to wait before making a
follow-up request. The Retry-After header can contain a HTTP date value to retry after or the

54

#status-code-200
https://nakadi.io/manual.html#/event-types/name/events_post
#status-code-429
https://tools.ietf.org/html/rfc6585
https://tools.ietf.org/html/rfc7231#section-7.1.3

number of seconds to delay. Either is acceptable but APIs should prefer to use a delay in
seconds.

• Return a trio of X-RateLimit headers. These headers (described below) allow a server to express
a service level in the form of a number of allowing requests within a given window of time and
when the window is reset.

The X-RateLimit headers are:

• X-RateLimit-Limit: The maximum number of requests that the client is allowed to make in this
window.

• X-RateLimit-Remaining: The number of requests allowed in the current window.

• X-RateLimit-Reset: The relative time in seconds when the rate limit window will be reset.
Beware that this is different to Github and Twitter’s usage of a header with the same name
which is using UTC epoch seconds instead.

The reason to allow both approaches is that APIs can have different needs. Retry-After is often
sufficient for general load handling and request throttling scenarios and notably, does not strictly
require the concept of a calling entity such as a tenant or named account. In turn this allows
resource owners to minimise the amount of state they have to carry with respect to client requests.
The 'X-RateLimit' headers are suitable for scenarios where clients are associated with pre-existing
account or tenancy structures. 'X-RateLimit' headers are generally returned on every request and
not just on a 429, which implies the service implementing the API is carrying sufficient state to
track the number of requests made within a given window for each named entity.

MUST support problem JSON (Under Construction)
DRAFT Proposal

RFC 7807 defines a Problem JSON object using the media type application/problem+json to provide
an extensible human and machine readable failure information beyond the HTTP response status
code to transports the failure kind (type / title) and the failure cause and location (instant / detail).
To make best use of this additional failure information, every endpoints must be capable of
returning a Problem JSON on client usage errors (4xx status codes) as well as server side processing
errors (5xx status codes).

Note: Clients must be robust and not rely on a Problem JSON object being returned, since (a)
failure responses may be created by infrastructure components not aware of this guideline or (b)
service may be unable to comply with this guideline in certain error situations.

Hint: The media type application/problem+json is often not implemented as a subset of
application/json by libraries and services! Thus clients need to include application/problem+json in
the Accept-Header to trigger delivery of the extended failure information.

The OpenAPI schema definition of the Problem JSON object can be found on GitHub. You can
reference it by using:

responses:
 503:

55

https://confluence.linz.govt.nz/display/STEP/API+Standards+-+Error+Response+Format
https://tools.ietf.org/html/rfc7807
#client-side-error-codes
#server-side-error-codes
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://opensource.zalando.com/restful-api-guidelines/models/problem-1.0.1.yaml

 description: Service Unavailable
 content:
 "application/problem+json":
 schema:
 $ref: 'https://opensource.zalando.com/restful-api-guidelines/models/problem-
1.0.1.yaml#/Problem'

You may define custom problem types as extensions of the Problem JSON object if your API needs to
return specific, additional, and more detailed error information.

Note: Problem type and instance identifiers in our APIs are not meant to be resolved. RFC 7807
encourages that problem types are URI references that point to human-readable documentation,
but we deliberately decided against that, as all important parts of the API must be documented
using OpenAPI anyway. In addition, URLs tend to be fragile and not very stable over longer periods
because of organizational and documentation changes and descriptions might easily get out of
sync.

In order to stay compatible with RFC 7807 we proposed to use relative URI references usually
defined by absolute-path ['?' query] ['#' fragment] as simplified identifiers in type and
instance fields:

• /problems/out-of-stock

• /problems/insufficient-funds

• /problems/user-deactivated

• /problems/connection-error#read-timeout

Hint: The use of absolute URIs is not forbidden but strongly discouraged. If you use absolute URIs,
please reference problem-1.0.0.yaml#/Problem instead.

MUST not expose stack traces
Stack traces contain implementation details that are not part of an API, and on which clients should
never rely. Moreover, stack traces can leak sensitive information that partners and third parties are
not allowed to receive and may disclose insights about vulnerabilities to attackers.

11. REST Basics - HTTP headers
We describe a handful of standard HTTP headers, which we found raising the most questions in our
daily usage, or which are useful in particular circumstances but not widely known.

Though we generally discourage usage of proprietary headers, they are useful to pass generic,
service independent, overarching information relevant for our specific application architecture.
We consistently define these proprietary headers in this section below. Whether services support
these concerns or not is optional. Therefore, the OpenAPI API specification is the right place to
make this explicitly visible — use the parameter definitions of the resource HTTP methods.

56

https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc3986#section-4.1
https://tools.ietf.org/html/rfc3986#section-4.3
https://opensource.zalando.com/restful-api-guidelines/models/problem-1.0.0.yaml#/Problem

MAY use standard headers
Use this list and explicitly mention its support in your OpenAPI definition.

SHOULD use kebab-case with uppercase separate
words for HTTP headers
This convention is followed by (most of) the standard headers e.g. as defined in RFC 2616 and RFC
4229. Examples:

If-Modified-Since
Accept-Encoding
Content-ID
Language

Note, HTTP standard defines headers as case-insensitive (RFC 7230, p.22). However, for sake of
readability and consistency you should follow the convention when using standard or proprietary
headers. Exceptions are common abbreviations like ID.

MUST use Content-* headers correctly
Content or entity headers are headers with a Content- prefix. They describe the content of the body
of the message and they can be used in both, HTTP requests and responses. Commonly used content
headers include but are not limited to:

• Content-Disposition can indicate that the representation is supposed to be saved as a file, and
the proposed file name.

• Content-Encoding indicates compression or encryption algorithms applied to the content.

• Content-Length indicates the length of the content (in bytes).

• Content-Language indicates that the body is meant for people literate in some human
language(s).

• Content-Location indicates where the body can be found otherwise (MAY use Content-Location
header for more details]).

• Content-Range is used in responses to range requests to indicate which part of the requested
resource representation is delivered with the body.

• Content-Type indicates the media type of the body content.

SHOULD use Location header instead of Content-
Location header
As the correct usage of Content-Location response header (see below) with respect to caching and
its method specific semantics is difficult, we discourage the use of Content-Location. In most cases it
is sufficient to inform clients about the resource location in create or re-direct responses by using

57

http://en.wikipedia.org/wiki/List_of_HTTP_header_fields
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc4229
https://tools.ietf.org/html/rfc4229
https://tools.ietf.org/html/rfc7230#page-22
https://tools.ietf.org/html/rfc6266#section-3.1.4.2
https://tools.ietf.org/html/rfc7231#section-3.1.2.2
https://tools.ietf.org/html/rfc7230#section-3.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.4.2
https://tools.ietf.org/html/rfc7233#section-4.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7231#section-3.1.4.2
https://tools.ietf.org/html/rfc7231#section-3.1.4.2

the Location header while avoiding the Content-Location specific ambiguities and complexities.

More details in RFC 7231 7.1.2 Location, 3.1.4.2 Content-Location

MAY use Content-Location header
Content-Location is an optional response header that can be used in successful write operations (
PUT, POST, or PATCH) or read operations (GET, HEAD) to guide caching and signal a receiver the actual
location of the resource transmitted in the response body. This allows clients to identify the
resource and to update their local copy when receiving a response with this header.

The Content-Location header can be used to support the following use cases:

• For reading operations GET and HEAD, a different location than the requested URL can be used to
indicate that the returned resource is subject to content negotiations, and that the value
provides a more specific identifier of the resource.

• For writing operations PUT and PATCH, an identical location to the requested URL can be used to
explicitly indicate that the returned resource is the current representation of the newly created
or updated resource.

• For writing operations POST and DELETE, a content location can be used to indicate that the body
contains a status report resource in response to the requested action, which is available at
provided location.

Note: When using the Content-Location header, the Content-Type header has to be set as well. For
example:

GET /products/123/images HTTP/1.1

HTTP/1.1 200 OK
Content-Type: image/png
Content-Location: /products/123/images?format=raw

MAY consider to support Prefer header to handle
processing preferences
The Prefer header defined in RFC 7240 allows clients to request processing behaviors from servers.
It pre-defines a number of preferences and is extensible, to allow others to be defined. Support for
the Prefer header is entirely optional and at the discretion of API designers, but as an existing
Internet Standard, is recommended over defining proprietary "X-" headers for processing
directives.

The Prefer header can defined like this in an API definition:

components:
 headers:
 - Prefer:

58

https://tools.ietf.org/html/rfc7231#section-7.1.2
https://tools.ietf.org/html/rfc7231#section-3.1.4.2
https://tools.ietf.org/html/rfc7231#section-7.1.2
https://tools.ietf.org/html/rfc7231#section-3.1.4.2
https://tools.ietf.org/html/rfc7231#section-3.1.4.2
#put
#post
#patch
#get
#head
#get
#head
#put
#patch
#post
#delete
https://tools.ietf.org/html/rfc7231#section-3.1.4.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7240
https://tools.ietf.org/html/rfc7240
https://tools.ietf.org/html/rfc7240
https://tools.ietf.org/html/rfc7240

 description: >
 The RFC7240 Prefer header indicates that a particular server behavior
 is preferred by the client but is not required for successful completion
 of the request (see [RFC 7240](https://tools.ietf.org/html/rfc7240).
 The following behaviors are supported by this API:

 # (indicate the preferences supported by the API or API endpoint)
 * **respond-async** is used to suggest the server to respond as fast as
 possible asynchronously using 202 - accepted - instead of waiting for
 the result.
 * **return=<minimal|representation>** is used to suggest the server to
 return using 204 without resource (minimal) or using 200 or 201 with
 resource (representation) in the response body on success.
 * **wait=<delta-seconds>** is used to suggest a maximum time the server
 has time to process the request synchronously.
 * **handling=<strict|lenient>** is used to suggest the server to be
 strict and report error conditions or lenient, i.e. robust and try to
 continue, if possible.

 type: array
 items:
 type: string
 required: false

Note: Please copy only the behaviors into your Prefer header specification that are supported by
your API endpoint. If necessary, specify different Prefer headers for each supported use case.

Supporting APIs may return the Preference-Applied header also defined in RFC 7240 to indicate
whether a preference has been applied.

MAY consider to support ETag together with If-Match
/If-None-Match header
When creating or updating resources it may be necessary to expose conflicts and to prevent the
'lost update' or 'initially created' problem. Following RFC 7232 "HTTP: Conditional Requests" this
can be best accomplished by supporting the ETag header together with the If-Match or If-None-Match
conditional header. The contents of an ETag: <entity-tag> header is either (a) a hash of the
response body, (b) a hash of the last modified field of the entity, or (c) a version number or
identifier of the entity version.

To expose conflicts between concurrent update operations via PUT, POST, or PATCH, the If-Match:
<entity-tag> header can be used to force the server to check whether the version of the updated
entity is conforming to the requested <entity-tag>. If no matching entity is found, the operation is
supposed a to respond with status code 412 - precondition failed.

Beside other use cases, If-None-Match: * can be used in a similar way to expose conflicts in resource
creation. If any matching entity is found, the operation is supposed a to respond with status code
412 - precondition failed.

59

https://tools.ietf.org/html/rfc7240
https://tools.ietf.org/html/rfc7240
https://tools.ietf.org/html/rfc7240#section-3
https://tools.ietf.org/html/rfc7240
https://tools.ietf.org/html/rfc7232
https://tools.ietf.org/html/rfc7232#section-2.3
https://tools.ietf.org/html/rfc7232#section-3.1
https://tools.ietf.org/html/rfc7232#section-3.2
#put
#post
#patch
https://tools.ietf.org/html/rfc7232#section-2.3
#status-code-412
#status-code-412

The ETag, If-Match, and If-None-Match headers can be defined as follows in the API definition:

components:
 headers:
 - ETag:
 description: |
 The RFC 7232 ETag header field in a response provides the entity-tag of
 a selected resource. The entity-tag is an opaque identifier for versions
 and representations of the same resource over time, regardless whether
 multiple versions are valid at the same time. An entity-tag consists of
 an opaque quoted string, possibly prefixed by a weakness indicator (see
 [RFC 7232 Section 2.3](https://tools.ietf.org/html/rfc7232#section-2.3).

 type: string
 required: false
 example: W/"xy", "5", "5db68c06-1a68-11e9-8341-68f728c1ba70"

 - If-Match:
 description: |
 The RFC7232 If-Match header field in a request requires the server to
 only operate on the resource that matches at least one of the provided
 entity-tags. This allows clients express a precondition that prevent
 the method from being applied if there have been any changes to the
 resource (see [RFC 7232 Section
 3.1](https://tools.ietf.org/html/rfc7232#section-3.1).

 type: string
 required: false
 example: "5", "7da7a728-f910-11e6-942a-68f728c1ba70"

 - If-None-Match:
 description: |
 The RFC7232 If-None-Match header field in a request requires the server
 to only operate on the resource if it does not match any of the provided
 entity-tags. If the provided entity-tag is `*`, it is required that the
 resource does not exist at all (see [RFC 7232 Section
 3.2](https://tools.ietf.org/html/rfc7232#section-3.2).

 type: string
 required: false
 example: "7da7a728-f910-11e6-942a-68f728c1ba70", *

Please see Optimistic locking in RESTful APIs for a detailed discussion and options.

MAY consider to support Idempotency-Key header
When creating or updating resources it can be helpful or necessary to ensure a strong idempotent
behavior comprising same responses, to prevent duplicate execution in case of retries after timeout
and network outages. Generally, this can be achieved by sending a client specific unique request key

60

https://tools.ietf.org/html/rfc7232#section-2.3
https://tools.ietf.org/html/rfc7232#section-3.1
https://tools.ietf.org/html/rfc7232#section-3.2

– that is not part of the resource – via Idempotency-Key header.

The unique request key is stored temporarily, e.g. for 24 hours, together with the response and the
request hash (optionally) of the first request in a key cache, regardless of whether it succeeded or
failed. The service can now look up the unique request key in the key cache and serve the response
from the key cache, instead of re-executing the request, to ensure idempotent behavior. Optionally,
it can check the request hash for consistency before serving the response. If the key is not in the key
store, the request is executed as usual and the response is stored in the key cache.

This allows clients to safely retry requests after timeouts, network outages, etc. while receive the
same response multiple times. Note: The request retry in this context requires to send the exact
same request, i.e. updates of the request that would change the result are off-limits. The request
hash in the key cache can protection against this misbehavior. The service is recommended to
reject such a request using status code 400.

Important: To grant a reliable idempotent execution semantic, the resource and the key cache
have to be updated with hard transaction semantics – considering all potential pitfalls of failures,
timeouts, and concurrent requests in a distributed systems. This makes a correct implementation
exceeding the local context very hard.

The Idempotency-Key header must be defined as follows, but you are free to choose your expiration
time:

components:
 headers:
 - Idempotency-Key:
 description: |
 The idempotency key is a free identifier created by the client to
 identify a request. It is used by the service to identify subsequent
 retries of the same request and ensure idempotent behavior by sending
 the same response without executing the request a second time.

 Clients should be careful as any subsequent requests with the same key
 may return the same response without further check. Therefore, it is
 recommended to use an UUID version 4 (random) or any other random
 string with enough entropy to avoid collisions.

 Idempotency keys expire after 24 hours. Clients are responsible to stay
 within this limit, if they require idempotent behavior.

 type: string
 format: uuid
 required: false
 example: "7da7a728-f910-11e6-942a-68f728c1ba70"

Hint: The key cache is not intended as request log, and therefore should have a limited lifetime,
else it could easily exceed the data resource in size.

Note: The Idempotency-Key header unlike other headers in this section is not standardized in an

61

#230
#status-code-400
#230
#230

RFC. Our only reference are the usage in the Stripe API. However, we do not want to change the
header name and semantic, and do not name it like the proprietry headers below. The header
addresses a generic REST concern and is different from the LINZ(Zalando) landscape specific
proprietary headers.

SHOULD use only the specified LINZ headers
As a general rule, proprietary HTTP headers should be avoided. From a conceptual point of view,
the business semantics and intent of an operation should always be expressed via the URLs path
and query parameters, the method, and the content, but not via proprietary headers. Headers are
typically used to implement protocol processing aspects, such as flow control, content negotiation,
and authentication, and represent business agnostic request modifiers that provide generic context
information (RFC 7231).

However, the exceptional usage of proprietary headers is still helpful when domain-specific generic
context information…

1. needs to be passed end to end along the service call chain (even if not all called services use it as
input for steering service behavior e.g. X-Sales-Channel header) and/or…

2. is provided by specific gateway components, for instance, our API gateway.

Below, we explicitly define the list of proprietary header exceptions usable for all services for
passing through generic context information of our domain (use case 1).

Per convention, non standardized, proprietary header names are prefixed with X-. (Due to
backward compatibility, we do not follow the Internet Engineering Task Force’s recommendation in
RFC 6648 to deprecate usage of X- headers.) Remember that HTTP header field names are not case-
sensitive:

Header field
name

Type Description Header field
value
example

X-LINZ-
Correlation-
Id

String For more information see https://confluence.linz.govt
.nz/display/STEP/Use+Correlation+IDs+and+Journey+IDs+i
n+all+STEP+apps+-+High+Level+Design/[correlation Ids].

GKY7oDhpSi
KY_gAAAABZ
_A

{Landonline-
Journey-Id}

String see Journey Ids 9f8b3ca3-
4be5-436c-
a847-
9cd55460c495

Exception: The only exception to this guideline are the conventional hop-by-hop X-RateLimit-
headers which can be used as defined in MUST use code 429 with headers for rate limits.

Hint: This guideline does not standardize proprietary headers for our specific gateway components
(2. use case above). This include, for instance, non pass-through headers x-tyk-version, All these
proprietary headers are allowlisted in the API Linter (lilly) checking this rule.

62

https://stripe.com/docs/api/idempotent_requests
https://tools.ietf.org/html/rfc7231#section-5
#x-sales-channel
https://tools.ietf.org/html/rfc6648
#X-linz-correlation-id
#X-linz-correlation-id
#X-linz-correlation-id
https://confluence.linz.govt
https://confluence.linz.govt.nz/display/STEP/%5BRFC%5D+Add+Journey+IDs+to+all+STEP+apps/

MUST propagate proprietary headers
All LINZ headers listed above are end-to-end headers [2] and must be propagated to the services
down the call chain. The header names and values must remain unchanged.

Sometimes the value of a proprietary header will be used as part of the entity in a subsequent
request. In such cases, the proprietary headers must still be propagated as headers with the
subsequent request, despite the duplication of information.

MUST support X-LINZ-Correlation-Id
The Correlation-ID is a generic parameter to be passed through service APIs and events and written
into log files and traces. A consequent usage of the Correlation-ID facilitates the tracking of call
flows through our system and allows the correlation of service activities initiated by a specific call.
This is extremely helpful for operational troubleshooting and log analysis. Main use case of
Correlation-ID is to track service calls of our SaaS fashion commerce platform and initiated
internal processing flows (executed synchronously via APIs or asynchronously via published
events).

Data Definition

The Correlation-ID must be passed through:

• RESTful API requests via X-LINZ-Correlation-Id proprietary header (see MUST propagate
proprietary headers)

The following formats are allowed:

• UUID (RFC-4122)

• base64 (RFC-4648)

• base64url (RFC-4648 Section 5)

• Random unique string restricted to the character set [a-zA-Z0-9/+_-=] maximal of 128
characters.

Note: If a legacy subsystem can only process Correlation-IDs with a specific format or length, it
must define this restriction in its API specification, and be generous and remove invalid characters
or cut the length to the supported limit.

Service Guidance

• Services must support Correlation-ID as generic input, i.e.

◦ RESTful API endpoints must support X-LINZ-Correlation-Id header in requests

Note: API-Clients must provide Correlation-ID when calling a service or producing events. If no
Correlation-ID is provided in a request or event, the service must create a new Correlation-ID.

• Services must propagate Correlation-ID, i.e. use Correlation-ID received with API calls or

63

#X-linz-correlation-id
#correlation-id
#correlation-id
#correlation-id
#correlation-id
#X-linz-correlation-id
https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc4648
https://tools.ietf.org/html/rfc4648#section-5
#correlation-id
#X-linz-correlation-id
#correlation-id
#correlation-id
#correlation-id
#correlation-id
#correlation-id

consumed events as…

◦ input for all API called and events published during processing

◦ data field written for logging and tracing

Hint: This rule also applies to application internal interfaces and events not published via Nakadi
(but e.g. via AWS SQS, Kinesis or service specific DB solutions).

12. REST Design - Hypermedia

MUST use REST maturity level 2
We strive for a good implementation of REST Maturity Level 2 as it enables us to build resource-
oriented APIs that make full use of HTTP verbs and status codes. You can see this expressed by
many rules throughout these guidelines, e.g.:

• MUST avoid actions — think about resources

• MUST keep URLs verb-free

• MUST use HTTP methods correctly

• SHOULD only use most common HTTP status codes

Although this is not HATEOAS, it should not prevent you from designing proper link relationships
in your APIs as stated in rules below.

MAY use REST maturity level 3 - HATEOAS
We do not generally recommend to implement REST Maturity Level 3. HATEOAS comes with
additional API complexity without real value in our SOA context where client and server interact
via REST APIs and provide complex business functions as part of our e-commerce SaaS platform.

Our major concerns regarding the promised advantages of HATEOAS (see also RESTistential Crisis
over Hypermedia APIs, Why I Hate HATEOAS and others for a detailed discussion):

• We follow the API First principle with APIs explicitly defined outside the code with standard
specification language. HATEOAS does not really add value for SOA client engineers in terms of
API self-descriptiveness: a client engineer finds necessary links and usage description
(depending on resource state) in the API reference definition anyway.

• Generic HATEOAS clients which need no prior knowledge about APIs and explore API
capabilities based on hypermedia information provided, is a theoretical concept that we haven’t
seen working in practice and does not fit to our SOA set-up. The OpenAPI description format
(and tooling based on OpenAPI) doesn’t provide sufficient support for HATEOAS either.

• In practice relevant HATEOAS approximations (e.g. following specifications like HAL or JSON
API) support API navigation by abstracting from URL endpoint and HTTP method aspects via
link types. So, Hypermedia does not prevent clients from required manual changes when
domain model changes over time.

64

http://martinfowler.com/articles/richardsonMaturityModel.html#level2
http://martinfowler.com/articles/richardsonMaturityModel.html#level3
https://www.infoq.com/news/2014/03/rest-at-odds-with-web-apis
https://www.infoq.com/news/2014/03/rest-at-odds-with-web-apis
https://jeffknupp.com/blog/2014/06/03/why-i-hate-hateoas/

• Hypermedia make sense for humans, less for SOA machine clients. We would expect use cases
where it may provide value more likely in the frontend and human facing service domain.

• Hypermedia does not prevent API clients to implement shortcuts and directly target resources
without 'discovering' them.

However, we do not forbid HATEOAS; you could use it, if you checked its limitations and still see
clear value for your usage scenario that justifies its additional complexity. If you use HATEOAS
please share experience and present your findings in the API Guild (internal_link).

MUST use common hypertext controls
When embedding links to other resources into representations you must use the common hypertext
control object. It contains at least one attribute:

• href: The URI of the resource the hypertext control is linking to. All our API are using HTTP(s) as
URI scheme.

In API that contain any hypertext controls, the attribute name href is reserved for usage within
hypertext controls.

The schema for hypertext controls can be derived from this model:

HttpLink:
 description: A base type of objects representing links to resources.
 type: object
 properties:
 href:
 description: Any URI that is using http or https protocol
 type: string
 format: uri
 required:
 - href

The name of an attribute holding such a HttpLink object specifies the relation between the object
that contains the link and the linked resource. Implementations should use names from the IANA
Link Relation Registry whenever appropriate. As IANA link relation names use hyphen-case
notation, while this guide enforces snake_case notation for attribute names, hyphens in IANA
names have to be replaced with underscores (e.g. the IANA link relation type version-history would
become the attribute version_history)

Specific link objects may extend the basic link type with additional attributes, to give additional
information related to the linked resource or the relationship between the source resource and the
linked one.

E.g. a service providing "Person" resources could model a person who is married with some other
person with a hypertext control that contains attributes which describe the other person (id, name)
but also the relationship "spouse" between the two persons (since):

65

https://confluence.linz.govt.nz/display/STEP/STEP+Engineering+Design+Group
#href
#href
http://www.iana.org/assignments/link-relations
http://www.iana.org/assignments/link-relations

{
 "id": "446f9876-e89b-12d3-a456-426655440000",
 "name": "Peter Mustermann",
 "spouse": {
 "href": "https://...",
 "since": "1996-12-19",
 "id": "123e4567-e89b-12d3-a456-426655440000",
 "name": "Linda Mustermann"
 }
}

Hypertext controls are allowed anywhere within a JSON model. While this specification would
allow HAL, we actually don’t recommend/enforce the usage of HAL anymore as the structural
separation of meta-data and data creates more harm than value to the understandability and
usability of an API.

SHOULD use simple hypertext controls for pagination
and self-references
For pagination and self-references a simplified form of the extensible common hypertext controls
should be used to reduce the specification and cognitive overhead. It consists of a simple URI value
in combination with the corresponding link relations, e.g. next, prev, first, last, or self.

See MUST use common hypertext controls and SHOULD use pagination links where applicable for
more information and examples.

MUST use full, absolute URI for resource identification
Links to other resource must always use full, absolute URI.

Motivation: Exposing any form of relative URI (no matter if the relative URI uses an absolute or
relative path) introduces avoidable client side complexity. It also requires clarity on the base URI,
which might not be given when using features like embedding subresources. The primary
advantage of non-absolute URI is reduction of the payload size, which is better achievable by
following the recommendation to use gzip compression

MUST not use link headers with JSON entities
For flexibility and precision, we prefer links to be directly embedded in the JSON payload instead of
being attached using the uncommon link header syntax. As a result, the use of the Link Header
defined by RFC 8288 in conjunction with JSON media types is forbidden.

13. REST Design - Performance

66

http://stateless.co/hal_specification.html
http://www.iana.org/assignments/link-relations
#next
#prev
#first
#last
#self
https://tools.ietf.org/html/rfc8288#section-3
https://tools.ietf.org/html/rfc8288#section-3
https://tools.ietf.org/html/rfc8288#section-3

SHOULD reduce bandwidth needs and improve
responsiveness
APIs should support techniques for reducing bandwidth based on client needs. This holds for APIs
that (might) have high payloads and/or are used in high-traffic scenarios like the public Internet
and telecommunication networks. Typical examples are APIs used by mobile web app clients with
(often) less bandwidth connectivity. (Zalando is a 'Mobile First' company, so be mindful of this
point.)

Common techniques include:

• compression of request and response bodies (see SHOULD use gzip compression)

• querying field filters to retrieve a subset of resource attributes (see MAY support partial
responses via filtering below)

• ETag and If-Match/If-None-Match headers to avoid re-fetching of unchanged resources (see MAY
consider to support ETag together with If-Match/If-None-Match header)

• Prefer header with return=minimal or respond-async to anticipate reduced processing
requirements of clients (see MAY consider to support Prefer header to handle processing
preferences)

• REST Design - Pagination for incremental access of larger collections of data items

• caching of master data items, i.e. resources that change rarely or not at all after creation (see
MUST document cacheable GET, HEAD, and POST endpoints).

Each of these items is described in greater detail below.

SHOULD use gzip compression
Compress the payload of your API’s responses with gzip, unless there’s a good reason not to — for
example, you are serving so many requests that the time to compress becomes a bottleneck. This
helps to transport data faster over the network (fewer bytes) and makes frontends respond faster.

Though gzip compression might be the default choice for server payload, the server should also
support payload without compression and its client control via Accept-Encoding request
header — see also RFC 7231 Section 5.3.4. The server should indicate used gzip compression via the
Content-Encoding header.

MAY support partial responses via filtering
Depending on your use case and payload size, you can significantly reduce network bandwidth
need by supporting filtering of returned entity fields. Here, the client can explicitly determine the
subset of fields he wants to receive via the fields query parameter. (It is analogue to GraphQL
fields and simple queries, and also applied, for instance, for Google Cloud API’s partial responses.)

67

https://tools.ietf.org/html/rfc7232#section-2.3
https://tools.ietf.org/html/rfc7232#section-3.1
https://tools.ietf.org/html/rfc7232#section-3.2
https://tools.ietf.org/html/rfc7240
https://tools.ietf.org/html/rfc7231#section-5.3.4
https://tools.ietf.org/html/rfc7231#section-5.3.4
https://tools.ietf.org/html/rfc7231#section-3.1.2.2
#fields
https://graphql.org/learn/queries/#fields
https://graphql.org/learn/queries/#fields
https://cloud.google.com/storage/docs/json_api/v1/how-tos/performance#partial-response

Unfiltered

GET http://api.example.org/users/123 HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json

{
 "id": "cddd5e44-dae0-11e5-8c01-63ed66ab2da5",
 "name": "John Doe",
 "address": "1600 Pennsylvania Avenue Northwest, Washington, DC, United States",
 "birthday": "1984-09-13",
 "friends": [{
 "id": "1fb43648-dae1-11e5-aa01-1fbc3abb1cd0",
 "name": "Jane Doe",
 "address": "1600 Pennsylvania Avenue Northwest, Washington, DC, United States",
 "birthday": "1988-04-07"
 }]
}

Filtered

GET http://api.example.org/users/123?fields=(name,friends(name)) HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json

{
 "name": "John Doe",
 "friends": [{
 "name": "Jane Doe"
 }]
}

The fields query parameter determines the fields returned with the response payload object. For
instance, (name) returns users root object with only the name field, and (name,friends(name)) returns
the name and the nested friends object with only its name field.

OpenAPI doesn’t support you in formally specifying different return object schemes depending on a
parameter. When you define the field parameter, we recommend to provide the following
description: Endpoint supports filtering of return object fields as described in [Rule
#157](https://opensource.zalando.com/restful-api-guidelines/#157)

The syntax of the query fields value is defined by the following BNF grammar.

<fields> ::= [<negation>] <fields_struct>
<fields_struct> ::= "(" <field_items> ")"
<field_items> ::= <field> ["," <field_items>]

68

#fields
https://opensource.zalando.com/restful-api-guidelines/#157
#fields
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form

<field> ::= <field_name> | <fields_substruct>
<fields_substruct> ::= <field_name> <fields_struct>
<field_name> ::= <dash_letter_digit> [<field_name>]
<dash_letter_digit> ::= <dash> | <letter> | <digit>
<dash> ::= "-" | "_"
<letter> ::= "A" | ... | "Z" | "a" | ... | "z"
<digit> ::= "0" | ... | "9"
<negation> ::= "!"

Note: Following the principle of least astonishment, you should not define the fields query
parameter using a default value, as the result is counter-intuitive and very likely not anticipated by
the consumer.

MAY allow optional embedding of sub-resources
Embedding related resources (also know as Resource expansion) is a great way to reduce the
number of requests. In cases where clients know upfront that they need some related resources
they can instruct the server to prefetch that data eagerly. Whether this is optimized on the server,
e.g. a database join, or done in a generic way, e.g. an HTTP proxy that transparently embeds
resources, is up to the implementation.

See MUST stick to conventional query parameters for naming, e.g. "embed" for steering of
embedded resource expansion. Please use the BNF grammar, as already defined above for filtering,
when it comes to an embedding query syntax.

Embedding a sub-resource can possibly look like this where an order resource has its order items
as sub-resource (/order/{orderId}/items):

GET /order/123?embed=(items) HTTP/1.1

{
 "id": "123",
 "_embedded": {
 "items": [
 {
 "position": 1,
 "sku": "1234-ABCD-7890",
 "price": {
 "amount": 71.99,
 "currency": "EUR"
 }
 }
]
 }
}

69

https://en.wikipedia.org/wiki/Principle_of_least_astonishment
#fields
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form

MUST document cacheable GET, HEAD, and POST
endpoints
Caching has to take many aspects into account, e.g. general cacheability of response information,
our guideline to protect endpoints using SSL and OAuth authorization, resource update and
invalidation rules, existence of multiple consumer instances. As a consequence, caching is in best
case complex, e.g. with respect to consistency, in worst case inefficient.

As a consequence, client side as well as transparent web caching should be avoided, unless the
service supports and requires it to protect itself, e.g. in case of a heavily used and therefore rate
limited master data service, i.e. data items that rarely or not at all change after creation.

As default, API providers and consumers should always set the Cache-Control header set to Cache-
Control: no-store and assume the same setting, if no Cache-Control header is provided.

Note: There is no need to document this default setting. However, please make sure that your
framework is attaching this header value by default, or ensure this manually, e.g. using the best
practice of Spring Security as shown below. Any setup deviating from this default must be
sufficiently documented.

Cache-Control: no-cache, no-store, must-revalidate, max-age=0

If your service really requires to support caching, please observe the following rules:

• Document all cacheable GET, HEAD, and POST endpoints by declaring the support of Cache-Control,
Vary, and ETag headers in response. Note: you must not define the Expires header to prevent
redundant and ambiguous definition of cache lifetime. A sensible default documentation of
these headers is given below.

• Take care to specify the ability to support caching by defining the right caching boundaries, i.e.
time-to-live and cache constraints, by providing sensible values for Cache-Control and Vary in
your service. We will explain best practices below.

• Provide efficient methods to warm up and update caches, e.g. as follows:

◦ In general, you should support ETag Together With If-Match/ If-None-Match Header on all
cacheable endpoints.

◦ For larger data items support HEAD requests or more efficient GET requests with If-None-Match
header to check for updates.

◦ For small data sets provide full collection GET requests supporting ETag, as well as HEAD
requests or GET requests with If-None-Match to check for updates.

◦ For medium sized data sets provide full collection GET requests supporting ETag together
with REST Design - Pagination and <entity-tag> filtering GET requests for limiting the
response to changes since the provided <entity-tag>. Note: this is not supported by generic
client and proxy caches on HTTP layer.

Hint: For proper cache support, you must return 304 without content on a failed HEAD or GET request
with If-None-Match: <entity-tag> instead of 412.

70

https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2.2.2
https://tools.ietf.org/html/rfc7234#section-5.2.2.2
https://tools.ietf.org/html/rfc7234#section-5.2
#get
#head
#post
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7231#section-7.1.4
https://tools.ietf.org/html/rfc7232#section-2.3
https://tools.ietf.org/html/rfc7234#section-5.3
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7231#section-7.1.4
#head
#get
https://tools.ietf.org/html/rfc7232#section-3.2
#get
https://tools.ietf.org/html/rfc7232#section-2.3
#head
#get
https://tools.ietf.org/html/rfc7232#section-3.2
#get
https://tools.ietf.org/html/rfc7232#section-2.3
https://tools.ietf.org/html/rfc7232#section-2.3
#get
https://tools.ietf.org/html/rfc7232#section-2.3
#status-code-304
#head
#get
#status-code-412

components:
 headers:
 - Cache-Control:
 description: |
 The RFC 7234 Cache-Control header field is providing directives to
 control how proxies and clients are allowed to cache responses results
 for performance. Clients and proxies are free to not support caching of
 results, however if they do, they must obey all directives mentioned in
 [RFC-7234 Section 5.2.2](https://tools.ietf.org/html/rfc7234) to the
 word.

 In case of caching, the directive provides the scope of the cache
 entry, i.e. only for the original user (private) or shared between all
 users (public), the lifetime of the cache entry in seconds (max-age),
 and the strategy how to handle a stale cache entry (must-revalidate).
 Please note, that the lifetime and validation directives for shared
 caches are different (s-maxage, proxy-revalidate).

 type: string
 required: false
 example: "private, must-revalidate, max-age=300"

 - Vary:
 description: |
 The RFC 7231 Vary header field in a response defines which parts of
 a request message, aside the target URL and HTTP method, might have
 influenced the response. A client or proxy cache must respect this
 information, to ensure that it delivers the correct cache entry (see
 [RFC-7231 Section
 7.1.4](https://tools.ietf.org/html/rfc7231#section-7.1.4)).

 type: string
 required: false
 example: "accept-encoding, accept-language"

Hint: For ETag source see MAY consider to support ETag together with If-Match/If-None-Match
header.

The default setting for Cache-Control should contain the private directive for endpoints with
standard OAuth authorization, as well as the must-revalidate directive to ensure, that the client
does not use stale cache entries. Last, the max-age directive should be set to a value between a few
seconds (max-age=60) and a few hours (max-age=86400) depending on the change rate of your master
data and your requirements to keep clients consistent.

Cache-Control: private, must-revalidate, max-age=300

The default setting for Vary is harder to determine correctly. It highly depends on the API endpoint,
e.g. whether it supports compression, accepts different media types, or requires other request

71

https://tools.ietf.org/html/rfc7232#section-2.3
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7231#section-7.1.4

specific headers. To support correct caching you have to carefully choose the value. However, a
good first default may be:

Vary: accept, accept-encoding

Anyhow, this is only relevant, if you encourage clients to install generic HTTP layer client and proxy
caches.

Note: generic client and proxy caching on HTTP level is hard to configure. Therefore, we strongly
recommend to attach the (possibly distributed) cache directly to the service (or gateway) layer of
your application. This relieves from interpreting the Vary header and greatly simplifies interpreting
the Cache-Control and ETag headers. Moreover, is highly efficient with respect to caching
performance and overhead, and allows to support more advanced cache update and warm up
patterns.

Anyhow, please carefully read RFC 7234 before adding any client or proxy cache.

14. REST Design - Pagination

MUST support pagination (Under Construction)
DRAFT Proposal

Access to lists of data items must support pagination to protect the service against overload as well
as for best client side iteration and batch processing experience. This holds true for all lists that are
(potentially) larger than just a few hundred entries.

There are two well known page iteration techniques:

• Offset/Limit-based pagination: numeric offset identifies the first page entry

• Cursor/Limit-based — aka key-based — pagination: a unique key element identifies the first
page entry (see also Facebook’s guide)

The technical conception of pagination should also consider user experience related issues. As
mentioned in this article, jumping to a specific page is far less used than navigation via next/prev
page links (See SHOULD use pagination links where applicable). This favours cursor-based over
offset-based pagination.

Note: To provide a consistent look and feel of pagination patterns, you must stick to the common
query parameter names defined in MUST stick to conventional query parameters.

MAY use cursor-based pagination, prefer offset-based
pagination
Cursor-based pagination is usually better and more efficient when compared to offset-based
pagination. Especially when it comes to high-data volumes and/or storage in NoSQL databases.

72

https://tools.ietf.org/html/rfc7231#section-7.1.4
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7232#section-2.3
https://tools.ietf.org/html/rfc7234
https://confluence.linz.govt.nz/display/STEP/Api+Standards+-+Pagination
https://developer.infoconnect.com/paging-results
https://dev.twitter.com/overview/api/cursoring
https://developers.facebook.com/docs/graph-api/results
https://www.smashingmagazine.com/2016/03/pagination-infinite-scrolling-load-more-buttons/
#next
#prev

Before choosing cursor-based pagination, consider the following trade-offs:

• Usability/framework support:

◦ Offset-based pagination is more widely known than cursor-based pagination, so it has more
framework support and is easier to use for API clients

• Use case - jump to a certain page:

◦ If jumping to a particular page in a range (e.g., 51 of 100) is really a required use case,
cursor-based navigation is not feasible.

• Data changes may lead to anomalies in result pages:

◦ Offset-based pagination may create duplicates or lead to missing entries if rows are inserted
or deleted between two subsequent paging requests.

◦ If implemented incorrectly, cursor-based pagination may fail when the cursor entry has
been deleted before fetching the pages.

• Performance considerations - efficient server-side processing using offset-based pagination is
hardly feasible for:

◦ Very big data sets, especially if they cannot reside in the main memory of the database.

◦ Sharded or NoSQL databases.

• Cursor-based navigation may not work if you need the total count of results.

The cursor used for pagination is an opaque pointer to a page, that must never be inspected or
constructed by clients. It usually encodes (encrypts) the page position, i.e. the identifier of the first
or last page element, the pagination direction, and the applied query filters - or a hash over these -
to safely recreate the collection (see also Cursor-based pagination in RESTful APIs).

SHOULD use pagination response page object
For iterating over collections (result sets) we propose to either use cursors (see MAY use cursor-
based pagination, prefer offset-based pagination) or simple hypertext controls (see SHOULD use
pagination links where applicable). To implement these in a consistent way, we have defined a
response page object pattern with the following field semantics:

• _links: The object holding the simplified HATEOAS Controls.

• self:the link or cursor in a pagination response or object pointing to the same collection object
or page.

• first: the link or cursor in a pagination response or object pointing to the first collection object
or page.

• prev: the link or cursor in a pagination response or object pointing to the previous collection
object or page.

• next: the link or cursor in a pagination response or object pointing to the next collection object
or page.

• last: the link or cursor in a pagination response or object pointing to the last collection object or
page.

73

#cursor
#_links
#self
#first
#prev
#next
#last

Pagination responses should contain the following additional array field to transport the page
content:

• resources: array of resources, holding all the items of the current page (resources MUST be
replaced by a resource name e.g. titles).

To simplify user experience, the applied query filters may be returned using the following field (see
also GET with body):

• query: object containing the query filters applied in the search request to filter the collection
resource.

As Result, the standard response page using cursors or pagination links may be defined as follows:

ResourceResponse:
 type: object
 required:
 - resources
 properties:
 _links:
 type: object
 required:
 - next
 properties:
 self:
 description: Pagination link|cursor pointing to the current page.
 type: string
 format: uri|cursor
 first:
 description: Pagination link|cursor pointing to the first page.
 type: string
 format: uri|cursor
 prev:
 description: Pagination link|cursor pointing to the previous page.
 type: string
 format: uri|cursor
 next:
 description: Pagination link|cursor pointing to the next page.
 type: string
 format: uri|cursor
 last:
 description: Pagination link|cursor pointing to the last page.
 type: string
 format: uri|cursor
 query:
 description: >
 Object containing the query filters applied to the collection resource.
 type: object
 properties: ...
 resources:
 description: Array of collection items.

74

#resources
#resources
#get-with-body
#query

 type: array
 required: false
 resources:
 type: ...

Note: While you may support cursors for next, prev, first, last, and self, it is best practice to
replace these with links in favor of SHOULD use pagination links where applicable.

SHOULD use pagination links where applicable
To simplify client design, APIs should support simplified hypertext controls for paginating over
collections whenever applicable as follows (see also [pagination-fields] for details):

Offset based pagination

{
 "titles": [...],
 "_links": {
 "self": "http://api.gateway.linz.co.nz/titles?offset=10&limit=10",
 "first": "http://api.gateway.linz.co.nz/titles?offset=0&limit=10",
 "prev": "http://api.gateway.linz.co.nz/titles?offset=0&limit=10",
 "next": "http://api.gateway.linz.co.nz/titles?offset=20&limit=10",
 "last": "http://api.gateway.linz.co.nz/titles?offset=50&limit=10",
 "query": {
 "query-param-<1>": ...,
 "query-param-<n>": ...
 }
 }
}

Remark: In the above case in order to calculate "last" link, the values offset and limit need to be
calculated off of the total.

You should avoid providing a total count unless there is a clear need to do so. Very often, there are
significant system and performance implications when supporting full counts. Especially, if the data
set grows and requests become complex queries and filters drive full scans. While this is an
implementation detail relative to the API, it is important to consider the ability to support serving
counts over the life of a service.

Cursor Based

{
 "titles": [...],
 "_links": {
 "self": "http://api.gateway.linz.co.nz/titles?cursor=<self-position>",
 "first": "http://api.gateway.linz.co.nz/titles?cursor=<first-position>",
 "prev": "http://api.gateway.linz.co.nz/titles?cursor=<previous-position>",
 "next": "http://api.gateway.linz.co.nz/titles?cursor=<next-position>",

75

#next
#prev
#first
#last
#self

 "last": "http://api.gateway.linz.co.nz/titles?cursor=<last-position>",
 "query": {
 "query-param-<1>": ...,
 "query-param-<n>": ...
 }
 }
}

15. REST Design - Compatibility

MUST not break backward compatibility
Change APIs, but keep all consumers running. Consumers usually have independent release
lifecycles, focus on stability, and avoid changes that do not provide additional value. APIs are
contracts between service providers and service consumers that cannot be broken via unilateral
decisions.

There are two techniques to change APIs without breaking them:

• follow rules for compatible extensions

• introduce new API versions and still support older versions with deprecation

We strongly encourage using compatible API extensions and discourage versioning (see SHOULD
avoid versioning and MUST not use media type versioning below). The following guidelines for
service providers (SHOULD prefer compatible extensions) and consumers (MUST prepare clients to
accept compatible API extensions) enable us (having Postel’s Law in mind) to make compatible
changes without versioning.

Note: There is a difference between incompatible and breaking changes. Incompatible changes are
changes that are not covered by the compatibility rules below. Breaking changes are incompatible
changes deployed into operation, and thereby breaking running API consumers. Usually,
incompatible changes are breaking changes when deployed into operation. However, in specific
controlled situations it is possible to deploy incompatible changes in a non-breaking way, if no API
consumer is using the affected API aspects (see also Deprecation guidelines).

Hint: Please note that the compatibility guarantees are for the "on the wire" format. Binary or
source compatibility of code generated from an API definition is not covered by these rules. If client
implementations update their generation process to a new version of the API definition, it has to be
expected that code changes are necessary.

SHOULD prefer compatible extensions
API designers should apply the following rules to evolve RESTful APIs for services in a backward-
compatible way:

• Add only optional, never mandatory fields.

• Never change the semantic of fields (e.g. changing the semantic from customer-number to

76

https://opensource.zalando.com/restful-api-guidelines/#deprecation

customer-id, as both are different unique customer keys)

• Input fields may have (complex) constraints being validated via server-side business logic.
Never change the validation logic to be more restrictive and make sure that all constraints are
clearly defined in description.

• Enum ranges can be reduced when used as input parameters, only if the server is ready to
accept and handle old range values too. Enum range can be reduced when used as output
parameters.

• Enum ranges cannot be extended when used for output parameters — clients may not be
prepared to handle it. However, enum ranges can be extended when used for input parameters.

• Support redirection in case an URL has to change 301 (Moved Permanently).

SHOULD design APIs conservatively
Designers of service provider APIs should be conservative and accurate in what they accept from
clients:

• Unknown input fields in payload or URL should not be ignored; servers should provide error
feedback to clients via an HTTP 400 response code.

• Be accurate in defining input data constraints (like formats, ranges, lengths etc.) — and check
constraints and return dedicated error information in case of violations.

• Prefer being more specific and restrictive (if compliant to functional requirements), e.g. by
defining length range of strings. It may simplify implementation while providing freedom for
further evolution as compatible extensions.

Not ignoring unknown input fields is a specific deviation from Postel’s Law (e.g. see also
The Robustness Principle Reconsidered) and a strong recommendation. Servers might want to take
different approach but should be aware of the following problems and be explicit in what is
supported:

• Ignoring unknown input fields is actually not an option for PUT, since it becomes asymmetric
with subsequent GET response and HTTP is clear about the PUT replace semantics and default
roundtrip expectations (see RFC 7231 Section 4.3.4). Note, accepting (i.e. not ignoring) unknown
input fields and returning it in subsequent GET responses is a different situation and compliant
to PUT semantics.

• Certain client errors cannot be recognized by servers, e.g. attribute name typing errors will be
ignored without server error feedback. The server cannot differentiate between the client
intentionally providing an additional field versus the client sending a mistakenly named field,
when the client’s actual intent was to provide an optional input field.

• Future extensions of the input data structure might be in conflict with already ignored fields
and, hence, will not be compatible, i.e. break clients that already use this field but with different
type.

In specific situations, where a (known) input field is not needed anymore, it either can stay in the
API definition with "not used anymore" description or can be removed from the API definition as
long as the server ignores this specific parameter.

77

#status-code-301
https://cacm.acm.org/magazines/2011/8/114933-the-robustness-principle-reconsidered/fulltext
#put
#get
#put
https://tools.ietf.org/html/rfc7231#section-4.3.4
#get
#put

MUST prepare clients to accept compatible API
extensions
Service clients should apply the robustness principle:

• Be conservative with API requests and data passed as input, e.g. avoid to exploit definition
deficits like passing megabytes of strings with unspecified maximum length.

• Be tolerant in processing and reading data of API responses, more specifically service clients
must be prepared for compatible API extensions of response data:

◦ Be tolerant with unknown fields in the payload (see also Fowler’s "TolerantReader" post), i.e.
ignore new fields but do not eliminate them from payload if needed for subsequent PUT
requests.

◦ Be prepared to handle HTTP status codes not explicitly specified in endpoint definitions.
Note also, that status codes are extensible. Default handling is how you would treat the
corresponding 2xx code (see RFC 7231 Section 6).

◦ Follow the redirect when the server returns HTTP status code 301 (Moved Permanently).

MUST treat OpenAPI specification as open for
extension by default
The OpenAPI specification is not very specific on default extensibility of objects, and redefines
JSON-Schema keywords related to extensibility, like additionalProperties. Following our
compatibility guidelines, OpenAPI object definitions are considered open for extension by default
as per Section 5.18 "additionalProperties" of JSON-Schema.

When it comes to OpenAPI, this means an additionalProperties declaration is not required to make
an object definition extensible:

• API clients consuming data must not assume that objects are closed for extension in the absence
of an additionalProperties declaration and must ignore fields sent by the server they cannot
process. This allows API servers to evolve their data formats.

• For API servers receiving unexpected data, the situation is slightly different. Instead of ignoring
fields, servers may reject requests whose entities contain undefined fields in order to signal to
clients that those fields would not be stored on behalf of the client. API designers must
document clearly how unexpected fields are handled for PUT, POST, and PATCH requests.

API formats must not declare additionalProperties to be false, as this prevents objects being
extended in the future.

Note that this guideline concentrates on default extensibility and does not exclude the use of
additionalProperties with a schema as a value, which might be appropriate in some circumstances,
e.g. see SHOULD define maps using additionalProperties.

78

http://martinfowler.com/bliki/TolerantReader.html
#put
#http-status-codes-and-errors
https://tools.ietf.org/html/rfc7231#section-6
#status-code-301
http://json-schema.org/latest/json-schema-validation.html#rfc.section.5.18
#put
#post
#patch

SHOULD avoid versioning
When changing your RESTful APIs, do so in a compatible way and avoid generating additional API
versions. Multiple versions can significantly complicate understanding, testing, maintaining,
evolving, operating and releasing our systems (supplementary reading).

If changing an API can’t be done in a compatible way, then proceed in one of these three ways:

• create a new resource (variant) in addition to the old resource variant

• create a new service endpoint — i.e. a new application with a new API (with a new domain
name)

• create a new API version supported in parallel with the old API by the same microservice

As we discourage versioning by all means because of the manifold disadvantages, we strongly
recommend to only use the first two approaches.

Further reading: API Versioning Has No "Right Way" provides an overview on different versioning
approaches to handle breaking changes without being opinionated.

MUST use URL versioning
However, when API versioning is unavoidable, you have to design your multi-version RESTful APIs
using url versioning (see MUST not use media type versioning).

If you want to route requests of different versions to different places, it’s often easier for
proxies/routers to do this based on URL path info than HTTP header info.

But there are some Cons With URL versioning a (major) version number is included in the path, e.g.
/v1/customers. The consumer has to wait until the provider has been released and deployed. If the
consumer also supports hypermedia links — even in their APIs — to drive workflows (HATEOAS),
this quickly becomes complex. So does coordinating version upgrades — especially with
hyperlinked service dependencies — when using URL versioning.

Media type versioning is less tightly coupled since it supports content negotiation and hence
reduces complexity of release management.
However, Tyk doesn’t read, the Accept: header which the is recommended for Content negotiation.

MUST not use media type versioning
However, when API versioning is unavoidable, you have to design your multi-version RESTful APIs
using media type versioning (see MUST use URL versioning). Media type versioning is less tightly
coupled since it supports content negotiation and hence reduces complexity of release
management.

Version information and media type are provided together via the HTTP Content-Type header — e.g.
application/x.zalando.cart+json;version=2. For incompatible changes, a new media type version
for the resource is created. To generate the new representation version, consumer and producer
can do content negotiation using the HTTP Content-Type and Accept headers.

79

http://martinfowler.com/articles/enterpriseREST.html
https://blog.apisyouwonthate.com/api-versioning-has-no-right-way-f3c75457c0b7

NOTE
This versioning only applies to the request and response content schema, not to URI
or method semantics.

Custom media type format

Custom media type format should have the following pattern:

application/x.<custom-media-type>+json;version=<version>

• custom-media-type is a custom type name, e.g. zalando.cart

• version is a number, e.g. 2

Example

In this example, a client wants only the new version of the response:

Accept: application/x.zalando.cart+json;version=2

A server responding to this, as well as a client sending a request with content should use the
Content-Type header, declaring that one is sending the new version:

Content-Type: application/x.zalando.cart+json;version=2

Using media type versioning should:

• Use a custom media type, e.g. application/x.zalando.cart+json

• Include versions in request and response headers to increase visibility

• Include Content-Type in the Vary header to enable proxy caches to differ between versions

Vary: Content-Type

TIP
Until an incompatible change is necessary, it is recommended to stay with the
standard application/json media type and do not use media type versioning.

MUST always return JSON objects as top-level data
structures
In a response body, you must always return a JSON object (and not e.g. an array) as a top level data
structure to support future extensibility. JSON objects support compatible extension by additional
attributes. This allows you to easily extend your response and e.g. add pagination later, without
breaking backwards compatibility. See SHOULD use pagination links where applicable for an
example.

80

Maps (see SHOULD define maps using additionalProperties), even though technically objects, are
also forbidden as top level data structures, since they don’t support compatible, future extensions.

16. REST Design - Deprecation
Sometimes it is necessary to phase out an API endpoint, an API version, or an API feature, e.g. if a
field or parameter is no longer supported or a whole business functionality behind an endpoint is
supposed to be shut down. As long as the API endpoints and features are still used by consumers
these shut downs are breaking changes and not allowed. To progress the following deprecation
rules have to be applied to make sure that the necessary consumer changes and actions are well
communicated and aligned using deprecation and sunset dates.

MUST reflect deprecation in API specifications
The API deprecation must be part of the API specification.

If an API endpoint (operation object), an input argument (parameter object), an in/out data object
(schema object), or on a more fine grained level, a schema attribute or property should be
deprecated, the producers must set deprecated: true for the affected element and add further
explanation to the description section of the API specification. If a future shut down is planned, the
producer must provide a sunset date and document in details what consumers should use instead
and how to migrate.

MUST obtain approval of clients before API shut down
Before shutting down an API, version of an API, or API feature the producer must make sure, that
all clients have given their consent on a sunset date. Producers should help consumers to migrate to
a potential new API or API feature by providing a migration manual and clearly state the time line
for replacement availability and sunset (see also SHOULD add Deprecation and Sunset header to
responses). Once all clients of a sunset API feature are migrated, the producer may shut down the
deprecated API feature.

MUST collect external partner consent on deprecation
time span
If the API is consumed by any external partner, the API owner must define a reasonable time span
that the API will be maintained after the producer has announced deprecation. All external
partners must state consent with this after-deprecation-life-span, i.e. the minimum time span
between official deprecation and first possible sunset, before they are allowed to use the API.

MUST monitor usage of deprecated API scheduled for
sunset
Owners of an API, API version, or API feature used in production that is scheduled for sunset must
monitor the usage of the sunset API, API version, or API feature in order to observe migration

81

progress and avoid uncontrolled breaking effects on ongoing consumers. See also SHOULD monitor
API usage.

SHOULD add Deprecation and Sunset header to
responses
During the deprecation phase, the producer should add a Deprecation: <date-time> (see draft: RFC
Deprecation HTTP Header) and - if also planned - a Sunset: <date-time> (see RFC 8594) header on
each response affected by a deprecated element (see MUST reflect deprecation in API
specifications).

The Deprecation header can either be set to true - if a feature is retired -, or carry a deprecation time
stamp, at which a replacement will become/became available and consumers must not on-board
any longer (see MUST not start using deprecated APIs). The optional Sunset time stamp carries the
information when consumers latest have to stop using a feature. The sunset date should always
offer an eligible time interval for switching to a replacement feature.

Deprecation: Tue, 31 Dec 2024 23:59:59 GMT
Sunset: Wed, 31 Dec 2025 23:59:59 GMT

If multiple elements are deprecated the Deprecation and Sunset headers are expected to be set to the
earliest time stamp to reflect the shortest interval consumers are expected to get active.

Note: adding the Deprecation and Sunset header is not sufficient to gain client consent to shut down
an API or feature.

Hint: In earlier guideline versions, we used the Warning header to provide the deprecation info to
clients. However, Warning header has a less specific semantics, will be obsolete with draft: RFC HTTP
Caching, and our syntax was not compliant with RFC 7234 — Warning header.

SHOULD add monitoring for Deprecation and Sunset
header
Clients should monitor the Deprecation and Sunset headers in HTTP responses to get information
about future sunset of APIs and API features (see SHOULD add Deprecation and Sunset header to
responses). We recommend that client owners build alerts on this monitoring information to
ensure alignment with service owners on required migration task.

Hint: In earlier guideline versions, we used the Warning header to provide the deprecation info (see
hint in SHOULD add Deprecation and Sunset header to responses).

MUST not start using deprecated APIs
Clients must not start using deprecated APIs, API versions, or API features.

82

https://tools.ietf.org/html/draft-ietf-httpapi-deprecation-header
https://tools.ietf.org/html/draft-ietf-httpapi-deprecation-header
https://tools.ietf.org/html/rfc8594#section-3
https://tools.ietf.org/html/draft-ietf-httpapi-deprecation-header
https://tools.ietf.org/html/rfc8594
https://tools.ietf.org/html/draft-ietf-httpapi-deprecation-header
https://tools.ietf.org/html/rfc8594
https://tools.ietf.org/html/draft-ietf-httpapi-deprecation-header
https://tools.ietf.org/html/rfc8594
https://tools.ietf.org/html/draft-ietf-httpbis-cache-06
https://tools.ietf.org/html/draft-ietf-httpbis-cache-06
https://tools.ietf.org/html/rfc7234#page-29
https://tools.ietf.org/html/draft-ietf-httpapi-deprecation-header
https://tools.ietf.org/html/rfc8594

17. REST Operation

MUST publish OpenAPI specification
All service applications must publish OpenAPI specifications of their APIs.

An API is published post deployment to the gateway as part of common-cd-oas of the release
bundle artifact. This will be a self-contained YAML files that each describe one API.

LandOnline API Portal

SHOULD monitor API usage
Owners of APIs used in production should monitor API service to get information about its using
clients. This information, for instance, is useful to identify potential review partner for API changes.

Hint: A preferred way of client detection implementation is by logging of the client-id retrieved
from the OAuth token.

18. EVENT Basics - Event Types (Under
Construction)
LINZ currently does not have a well defined Events Driven Architecture or Events Centre of
Excellence (COE, COP), once it does then this section will be review and standards updated.

LINZ architecture centers around decoupled microservices and in that context we favour
asynchronous event driven approaches. The guidelines focus on how to design and publish events
intended to be shared for others to consume.

Events are defined using an item called an Event Type. The Event Type allows events to have their
structure declared with a schema by producers and understood by consumers. An Event Type
declares standard information, such as a name, an owning application (and by implication, an
owning team), a schema defining the event’s custom data, and a compatibility mode declaring how
the schema will be evolved. Event Types also allow the declaration of validation and enrichment
strategies for events, along with supplemental information such as how events can be partitioned
in an event stream.

Event Types belong to a well known Event Category (such as a data change category), which
provides extra information that is common to that kind of event.

Event Types can be published and made available as API resources for teams to use, typically in an
Event Type Registry. Each event published can then be validated against the overall structure of its
event type and the schema for its custom data.

The basic model described above was originally developed in the Nakadi project, which acts as a
reference implementation (see also Nakadi API (internal_link)) of the event type registry, and as a
validating publish/subscribe broker for event producers and consumers.

83

https://apiportal.app.landonline.govt.nz/
https://github.com/zalando/nakadi
https://apis.zalando.net/apis/nakadi-event-bus-api-definition/ui

MUST define events compliant with overall API
guidelines
Events must be consistent with other API data and the API Guidelines in general (as far as
applicable).

Everything expressed in the Introduction to these Guidelines is applicable to event data
interchange between services. This is because our events, just like our APIs, represent a
commitment to express what our systems do and designing high-quality, useful events allows us to
develop new and interesting products and services.

What distinguishes events from other kinds of data is the delivery style used, asynchronous
publish-subscribe messaging. But there is no reason why they could not be made available using a
REST API, for example via a search request or as a paginated feed, and it will be common to base
events on the models created for the service’s REST API.

The following existing guideline sections are applicable to events:

• General guidelines

• REST Basics - Data formats

• REST Basics - JSON payload

• REST Design - Hypermedia

MUST treat events as part of the service interface
Events are part of a service’s interface to the outside world equivalent in standing to a service’s
REST API. Services publishing data for integration must treat their events as a first class design
concern, just as they would an API. For example this means approaching events with the "API first"
principle in mind as described in the Introduction.

MUST make event schema available for review
Services publishing event data for use by others must make the event schema as well as the event
type definition available for review.

MUST specify and register events as event types
In Zalando’s architecture, events are registered using a structure called an Event Type. The Event
Type declares standard information as follows:

• A well known event category, such as a general or data change category.

• The name of the event type.

• The definition of the event target audience.

• An owning application, and by implication, an owning team.

84

• A schema defining the event payload.

• The compatibility mode for the type.

Event Types allow easier discovery of event information and ensure that information is well-
structured, consistent, and can be validated. The core Event Type structure is shown below as an
OpenAPI object definition:

EventType:
 description: |
 An event type defines the schema and its runtime properties. The required
 fields are the minimum set the creator of an event type is expected to
 supply.
 required:
 - name
 - category
 - owning_application
 - schema
 properties:
 name:
 description: |
 Name of this EventType. The name must follow the functional naming
 pattern `<functional-name>.<event-name>` to preserve global
 uniqueness and readability.
 type: string
 pattern: '[a-z][a-z0-9-]*\.[a-z][a-z0-9-]*(\.[Vv][0-9.]+)?'
 example: |
 transactions-order.order-cancelled
 customer-personal-data.email-changed.v2
 audience:
 type: string
 enum:
 - company-internal
 - external-public
 description: |
 Intended target audience of the event type, analogue to audience definition
for REST APIs
 in rule #219 -- see https://opensource.zalando.com/restful-api-guidelines/#219
 owning_application:
 description: |
 Name of the application (eg, as would be used in infrastructure
 application or service registry) owning this `EventType`.
 type: string
 example: price-service
 category:
 description: Defines the category of this EventType.
 type: string
 enum:
 - data
 - general
 compatibility_mode:

85

 description: |
 The compatibility mode to evolve the schema.
 type: string
 enum:
 - compatible
 - forward
 - none
 default: forward
 schema:
 description: The most recent payload schema for this EventType.
 type: object
 properties:
 version:
 description: Values are based on semantic versioning (eg "1.2.1").
 type: string
 default: '1.0.0'
 created_at:
 description: Creation timestamp of the schema.
 type: string
 readOnly: true
 format: date-time
 example: '1996-12-19T16:39:57-08:00'
 type:
 description: |
 The schema language of schema definition. Currently only
 json_schema (JSON Schema v04) syntax is defined, but in the
 future there could be others.
 type: string
 enum:
 - json_schema
 schema:
 description: |
 The schema as string in the syntax defined in the field type.
 type: string
 required:
 - type
 - schema
 ordering_key_fields:
 type: array
 description: |
 Indicates which field is used for application level ordering of events.
 It is typically a single field, but also multiple fields for compound
 ordering key are supported (first item is most significant).

 This is an informational only event type attribute for specification of
 application level ordering. Nakadi transportation layer is not affected,
 where events are delivered to consumers in the order they were published.

 Scope of the ordering is all events (of all partitions), unless it is
 restricted to data instance scope in combination with
 `ordering_instance_ids` attribute below.

86

 This field can be modified at any moment, but event type owners are
 expected to notify consumer in advance about the change.

 Background: Event ordering is often created on application level using
 ascending counters, and data providers/consumers do not need to rely on the
 event publication order. A typical example are data instance change events
 used to keep a data store replica in sync. Here you have an order
 defined per instance using data object change counters (aka row update
 version) and the order of event publication is not relevant, because
 consumers for data synchronization skip older instance versions when they
 reconstruct the data object replica state.

 items:
 type: string
 description: |
 Indicates a single ordering field. This is a JsonPointer, which is applied
 onto the whole event object, including the contained metadata and data (in
 case of a data change event) objects. It must point to a field of type
 string or number/integer (as for those the ordering is obvious).

 Indicates a single ordering field. It is a simple path (dot separated) to
 the JSON leaf element of the whole event object, including the contained
metadata and data (in
 case of a data change event) objects. It must point to a field of type
 string or number/integer (as for those the ordering is obvious), and must be
 present in the schema.
 example: "data.order_change_counter"
 ordering_instance_ids:
 type: array
 description: |
 Indicates which field represents the data instance identifier and scope in
 which ordering_key_fields provides a strict order. It is typically a single
 field, but multiple fields for compound identifier keys are also supported.

 This is an informational only event type attribute without specific Nakadi
 semantics for specification of application level ordering. It only can be
 used in combination with `ordering_key_fields`.

 This field can be modified at any moment, but event type owners are expected
 to notify consumer in advance about the change.
 items:
 type: string
 description: |
 Indicates a single key field. It is a simple path (dot separated) to the
JSON
 leaf element of the whole event object, including the contained metadata and
 data (in case of a data change event) objects, and it must be present in the
 schema.
 example: "data.order_number"
 created_at:

87

 description: When this event type was created.
 type: string
 pattern: date-time
 updated_at:
 description: When this event type was last updated.
 type: string
 pattern: date-time

APIs such as registries supporting event types, may extend the model, including the set of
supported categories and schema formats. For example the Nakadi API’s event category registration
also allows the declaration of validation and enrichment strategies for events, along with
supplemental information, such as how events are partitioned in the stream (see SHOULD use the
hash partition strategy for data change events).

MUST follow naming convention for event type names
Event type names must (or should, see [223] for details and definition) conform to the functional
naming depending on the audience as follows:

<event-type-name> ::= <functional-event-name> | <application-event-name>

<functional-event-name> ::= <functional-name>.<event-name>[.<version>]

<event-name> ::= [a-z][a-z0-9-]* -- free event name (functional name)

<version> ::= [Vv][0-9.]* -- major version of non compatible schemas

Hint: The following convention (e.g. used by legacy STUPS infrastructure) is deprecated and only
allowed for internal event type names:

<application-event-name> ::= [<organization-id>.]<application-id>.<event-name>
<organization-id> ::= [a-z][a-z0-9-]* -- organization identifier, e.g. team
identifier
<application-id> ::= [a-z][a-z0-9-]* -- application identifier

Note: consistent naming should be used whenever the same entity is exposed by a data change
event and a RESTful API.

MUST indicate ownership of event types
Event definitions must have clear ownership - this can be indicated via the owning_application field
of the EventType.

Typically there is one producer application, which owns the EventType and is responsible for its
definition, akin to how RESTful API definitions are managed. However, the owner may also be a
particular service from a set of multiple services that are producing the same kind of event.

88

MUST carefully define the compatibility mode
Event type owners must pay attention to the choice of compatibility mode. The mode provides a
means to evolve the schema. The range of modes are designed to be flexible enough so that
producers can evolve schemas while not inadvertently breaking existing consumers:

• none: Any schema modification is accepted, even if it might break existing producers or
consumers. When validating events, undefined properties are accepted unless declared in the
schema.

• forward: A schema S1 is forward compatible if the previously registered schema, S0 can read
events defined by S1 - that is, consumers can read events tagged with the latest schema version
using the previous version as long as consumers follow the robustness principle described in
the guideline’s API design principles.

• compatible: This means changes are fully compatible. A new schema, S1, is fully compatible
when every event published since the first schema version will validate against the latest
schema. In compatible mode, only the addition of new optional properties and definitions to an
existing schema is allowed. Other changes are forbidden.

MUST ensure event schema conforms to OpenAPI
schema object
To align the event schema specifications to API specifications, we use the Schema Object as defined
by the OpenAPI Specifications to define event schemas. This is particularly useful for events that
represent data changes about resources also used in other APIs.

The OpenAPI Schema Object is an extended subset of JSON Schema Draft 4. For convenience, we
highlight some important differences below. Please refer to the OpenAPI Schema Object
specification for details.

As the OpenAPI Schema Object specification removes some JSON Schema keywords, the following
properties must not be used in event schemas:

• additionalItems

• contains

• patternProperties

• dependencies

• propertyNames

• const

• not

• oneOf

On the other side Schema Object redefines some JSON Schema keywords:

• additionalProperties: For event types that declare compatibility guarantees, there are

89

https://github.com/OAI/OpenAPI-Specification/blob/main/versions/2.0.md#schemaObject
http://json-schema.org/
https://github.com/OAI/OpenAPI-Specification/blob/main/versions/2.0.md#schemaObject
https://github.com/OAI/OpenAPI-Specification/blob/main/versions/2.0.md#schemaObject

recommended constraints around the use of this field. See the guideline SHOULD avoid
additionalProperties in event type schemas for details.

Finally, the Schema Object extends JSON Schema with some keywords:

• readOnly: events are logically immutable, so readOnly can be considered redundant, but
harmless.

• discriminator: to support polymorphism, as an alternative to oneOf.

• ^x-: patterned objects in the form of vendor extensions can be used in event type schema, but it
might be the case that general purpose validators do not understand them to enforce a
validation check, and fall back to must-ignore processing. A future version of the guidelines
may define well known vendor extensions for events.

SHOULD avoid additionalProperties in event type
schemas
Event type schema should avoid using additionalProperties declarations, in order to support
schema evolution.

Events are often intermediated by publish/subscribe systems and are commonly captured in logs or
long term storage to be read later. In particular, the schemas used by publishers and consumers can
drift over time. As a result, compatibility and extensibility issues that happen less frequently with
client-server style APIs become important and regular considerations for event design. The
guidelines recommend the following to enable event schema evolution:

• Publishers who intend to provide compatibility and allow their schemas to evolve safely over
time must not declare an additionalProperties field with a value of true (i.e., a wildcard
extension point). Instead they must define new optional fields and update their schemas in
advance of publishing those fields.

• Consumers must ignore fields they cannot process and not raise errors. This can happen if they
are processing events with an older copy of the event schema than the one containing the new
definitions specified by the publishers.

The above constraint does not mean fields can never be added in future revisions of an event type
schema - additive compatible changes are allowed, only that the new schema for an event type
must define the field first before it is published within an event. By the same turn the consumer
must ignore fields it does not know about from its copy of the schema, just as they would as an API
client - that is, they cannot treat the absence of an additionalProperties field as though the event
type schema was closed for extension.

Requiring event publishers to define their fields ahead of publishing avoids the problem of field
redefinition. This is when a publisher defines a field to be of a different type that was already being
emitted, or, is changing the type of an undefined field. Both of these are prevented by not using
additionalProperties.

See also rule MUST treat OpenAPI specification as open for extension by default in the REST Design
- Compatibility section for further guidelines on the use of additionalProperties.

90

https://github.com/OAI/OpenAPI-Specification/blob/main/versions/2.0.md#vendorExtensions

MUST use semantic versioning of event type schemas
Event schemas must be versioned — analog to MUST use semantic versioning for REST API
definitions. The compatibility mode interact with revision numbers in the schema version field,
which follows semantic versioning (MAJOR.MINOR.PATCH):

• Changing an event type with compatibility mode compatible or forward can lead to a PATCH or
MINOR version revision. MAJOR breaking changes are not allowed.

• Changing an event type with compatibility mode none can lead to PATCH, MINOR or MAJOR level
changes.

The following examples illustrate these relations:

• Changes to the event type’s title or description are considered PATCH level.

• Adding new optional fields to an event type’s schema is considered a MINOR level change.

• All other changes are considered MAJOR level, such as renaming or removing fields, or adding
new required fields.

19. EVENT Basics - Event Categories
An event category describes a generic class of event types. The guidelines define two such
categories:

• General Event: a general purpose category.

• Data Change Event: a category to inform about data entity changes and used e.g. for data
replication based data integration.

MUST ensure that events conform to an event category
A category describes a predefined structure (e.g. including event metadata as part of the event
payload) that event publishers must conform to along with standard information specific for the
event category (e.g. the operation for data change events).

The general event category

The structure of the General Event Category is shown below as an OpenAPI Schema Object
definition:

GeneralEvent:
 description: |
 A general kind of event. Event kinds based on this event define their
 custom schema payload as the top level of the document, with the
 "metadata" field being required and reserved for standard metadata. An
 instance of an event based on the event type thus conforms to both the
 EventMetadata definition and the custom schema definition.
 Hint: In earlier versions this category was called the Business Category.

91

 required:
 - metadata
 properties:
 metadata:
 $ref: '#/definitions/EventMetadata'

Event types based on the General Event Category define their custom schema payload at the top-
level of the document, with the metadata field being reserved for standard information (the
contents of metadata are described further down in this section).

Note:

• The General Event was called a Business Event in earlier versions of the guidelines.
Implementation experience has shown that the category’s structure gets used for other kinds of
events, hence the name has been generalized to reflect how teams are using it.

• The General Event is still useful and recommended for the purpose of defining events that drive
a business process.

• The Nakadi broker still refers to the General Category as the Business Category and uses the
keyword business for event type registration. Other than that, the JSON structures are identical.

See MUST use general events to signal steps in business processes for more guidance on how to use
the category.

The data change event category

The Data Change Event Category structure is shown below as an OpenAPI Schema Object:

DataChangeEvent:
 description: |
 Represents a change to an entity. The required fields are those
 expected to be sent by the producer, other fields may be added
 by intermediaries such as a publish/subscribe broker. An instance
 of an event based on the event type conforms to both the
 DataChangeEvent's definition and the custom schema definition.
 required:
 - metadata
 - data_op
 - data_type
 - data
 properties:
 metadata:
 description: The metadata for this event.
 $ref: '#/definitions/EventMetadata'
 data:
 description: |
 Contains custom payload for the event type. The payload must conform
 to a schema associated with the event type declared in the metadata
 object's `event_type` field.
 type: object

92

 data_type:
 description: name of the (business) data entity that has been mutated
 type: string
 example: 'sales_order.order'
 data_op:
 type: string
 enum: ['C', 'U', 'D', 'S']
 description: |
 The type of operation executed on the entity:

 - C: Creation of an entity
 - U: An update to an entity.
 - D: Deletion of an entity.
 - S: A snapshot of an entity at a point in time.

The Data Change Event Category is structurally different to the General Event Category by defining
a field called data as container for the custom payload, as well as specific information related to
data changes in the data_op.

The following guidelines specifically apply to Data Change Events:

• MUST use data change events to signal mutations

• MUST provide explicit event ordering for data change events

• SHOULD ensure that data change events match the APIs resources

• SHOULD use the hash partition strategy for data change events

Event metadata

MUST provide mandatory event metadata
The General and Data Change event categories share a common structure for metadata
representing generic event information. Parts of the metadata is provided by the Nakadi event
messaging platform, but event identifier (eid) and event creation timestamp (occurred_at) have to
be provided by the event producers. The metadata structure is defined below as an OpenAPI
Schema Object:

EventMetadata:
 type: object
 description: |
 Carries metadata for an Event along with common fields. The required
 fields are those expected to be sent by the producer, other fields may be
 added by intermediaries such as publish/subscribe broker.
 required:
 - eid
 - occurred_at
 properties:
 eid:

93

 description: Identifier of this event.
 type: string
 format: uuid
 example: '105a76d8-db49-4144-ace7-e683e8f4ba46'
 event_type:
 description: The name of the EventType of this Event.
 type: string
 example: 'example.important-business-event'
 occurred_at:
 description: |
 Technical timestamp of when the event object was created during processing
 of the business event by the producer application. Note, it may differ from
 the timestamp when the related real-world business event happened (e.g. when
 the packet was handed over to the customer), which should be passed
separately
 via an event type specific attribute.
 Depending on the producer implementation, the timestamp is typically some
 milliseconds earlier than when the event is published and received by the
 API event post endpoint server -- see below.
 type: string
 format: date-time
 example: '1996-12-19T16:39:57-08:00'
 received_at:
 description: |
 Timestamp of when the event was received via the API event post endpoints.
 It is automatically enriched, and events will be rejected if set by the
 event producer.
 type: string
 readOnly: true
 format: date-time
 example: '1996-12-19T16:39:57-08:00'
 version:
 description: |
 Version of the schema used for validating this event. This may be
 enriched upon reception by intermediaries. This string uses semantic
 versioning.
 type: string
 readOnly: true
 parent_eids:
 description: |
 Event identifiers of the Event that caused the generation of
 this Event. Set by the producer.
 type: array
 items:
 type: string
 format: uuid
 example: '105a76d8-db49-4144-ace7-e683e8f4ba46'
 flow_id:
 description: |
 A flow-id for this event (corresponds to the X-Flow-Id HTTP header).
 type: string

94

 example: 'JAh6xH4OQhCJ9PutIV_RYw'
 partition:
 description: |
 Indicates the partition assigned to this Event. Used for systems
 where an event type's events can be sub-divided into partitions.
 type: string
 example: '0'

Please note that intermediaries acting between the producer of an event and its ultimate
consumers, may perform operations like validation of events and enrichment of an event’s
metadata. For example brokers such as Nakadi, can validate and enrich events with arbitrary
additional fields that are not specified here and may set default or other values, if some of the
specified fields are not supplied. How such systems work is outside the scope of these guidelines
but producers and consumers working with such systems should look into their documentation for
additional information.

MUST use unique event identifiers
The eid (event identifier) value of an event must be unique.

The eid property is part of the standard metadata for an event and gives the event an identifier.
Producing clients must generate this value when sending an event and it must be guaranteed to be
unique from the perspective of the owning application. In particular events within a given event
type’s stream must have unique identifiers. This allows consumers to process the eid to assert the
event is unique and use it as an idempotency check.

It is the responsibility of the producer to ensure event identifiers do in fact distinctly identify events
published for a specific event type. A straightforward way to create a unique identifier for an event
is to generate a UUID value. However, event producers need to ensure that retried attempts to
publish an event, e.g. as a mitigation of temporary Nakadi or network failures, use the same event
identifier as the initial (possibly failed) attempt.

Hint: Using the same eid for retries can be ensured, e.g. by deterministic UUID computation
functions, which are only based on event attributes (producing UUIDs without random
components), or some form of intermediate persistence, like an event publishing retry queue.

Event identifiers facilitate event duplicate detection by event consumers -- see MUST prepare event
consumers for duplicate events.

MUST use general events to signal steps in business
processes
When publishing events that represent steps in a business process, event types must be based on
the General Event category. All your events of a single business process will conform to the
following rules:

• Business events must contain a specific identifier field (a business process id or "bp-id") similar
to flow-id to allow for efficient aggregation of all events in a business process execution.

95

• Business events must contain a means to correctly order events in a business process execution.
In distributed settings where monotonically increasing values (such as a high precision
timestamp that is assured to move forwards) cannot be obtained, the parent_eids data structure
allows causal relationships to be declared between events.

• Business events should only contain information that is new to the business process execution
at the specific step/arrival point.

• Each business process sequence should be started by a business event containing all relevant
context information.

• Business events must be published reliably by the service.

At the moment we cannot state whether it’s best practice to publish all the events for a business
process using a single event type and represent the specific steps with a state field, or whether to
use multiple event types to represent each step. For now we suggest assessing each option and
sticking to one for a given business process.

SHOULD provide explicit event ordering for general
events
Event processing consumer applications need the order information to reconstruct the business
event stream, for instance, in order to replay events in error situations, or to execute analytical use
cases outside the context of the original event stream consumption. All general events (fka business
events) should be provided with the explicit information about the business ordering of the events.
To accomplish this event ordering the event type definition

• must specify a the ordering_key_fields property to indicate which field(s) contain the ordering
key, and

• should specify the ordering_instance_ids property to define which field(s) represents the
business entity instance identifier.

Note: The ordering_instance_ids restrict the scope in which the ordering_key_fields provide the
strict order. If undefined, the ordering is assumed to be provided in scope of all events.

The business ordering information can be provided – among other ways – by maintaining…

• a strictly monotonically increasing version of entity instances (e.g. created as row update
counter by a database), or

• a strictly monotonically increasing sequence counter (maintained per partition or event type).

Hint: timestamps are often a bad choice, since in distributed systems events may occur at the same
time, or clocks are not exactly synchronized, or jump forward and backward to compensate drifts
or leap-seconds. If you use anyway timestamps to indicate event ordering, you must carefully
ensure that the designated event order is not messed up by these effects and use UTC time zone
format.

Note: The received_at and partition_offset metadata set by Nakadi typically is different from the
business event ordering, since (1) Nakadi is a distributed concurrent system without atomic,

96

ordered event creation and (2) the application’s implementation of event publishing may not
exactly reflect the business order. The business ordering information is application knowledge, and
implemented in the scope of event partitions or specific entities, but may also comprise all events, if
scaling requirements are low.

MUST use data change events to signal mutations
You must use data change events to signal changes of stored entity instances and facilitate e.g.
change data capture (CDC). Event sourced change data capture is crucial for our data integration
architecture as it supports the logical replication (and reconstruction) of the application datastores
to the data analytics and AI platform as transactional source datasets.

• Change events must be provided when publishing events that represent created, updated, or
deleted data.

• Change events must provide the complete entity data including the identifier of the changed
instance to allow aggregation of all related events for the entity.

• Change events MUST provide explicit event ordering for data change events.

• Change events must be published reliably by the service.

MUST provide explicit event ordering for data change
events
While the order information is recommended for business events, it must be provided for data
change events. The ordering information defines the (create, update, delete) change order of the
data entity instances managed via the application’s transactional datastore. It is needed for change
data capture to keep transactional dataset replicas in sync as source for data analytics.

For details about how to provide the data change ordering information, please check SHOULD
provide explicit event ordering for general events.

Exception: In situations where the transactional data is 'append only', i.e. entity instances are only
created, but never updated or deleted, the ordering information may not be provided.

SHOULD use the hash partition strategy for data
change events
The hash partition strategy allows a producer to define which fields in an event are used as input to
compute a logical partition the event should be added to. Partitions are useful as they allow
supporting systems to scale their throughput while provide local ordering for event entities.

The hash option is particularly useful for data changes as it allows all related events for an entity to
be consistently assigned to a partition, providing a relative ordered stream of events for that entity.
This is because while each partition has a total ordering, ordering across partitions is not assured
by a supporting system, thus it is possible for events sent across partitions to appear in a different
order to consumers that the order they arrived at the server.

97

When using the hash strategy the partition key in almost all cases should represent the entity being
changed and not a per event or change identifier such as the eid field or a timestamp. This ensures
data changes arrive at the same partition for a given entity and can be consumed effectively by
clients.

There may be exceptional cases where data change events could have their partition strategy set to
be the producer defined or random options, but generally hash is the right option - that is while the
guidelines here are a "should", they can be read as "must, unless you have a very good reason".

20. EVENT Design

SHOULD avoid writing sensitive data to events
Event data security is supported by Nakadi Event Bus mechanisms for access control and
authorization of publishing or consuming events. However, we avoid writing sensitive data (e.g.
personal data like e-mail or address) to events unless it is needed for the business. Sensitive data
create additional obligations for access control and compliance and generally increases data
protection risks.

MUST prepare event consumers for duplicate events
Event consumers must be able to process duplicate events.

Most message brokers and data streaming systems offer "at-least-once" delivery. That is, one
particular event is delivered to the consumers one or more times. Other circumstances can also
cause duplicate events.

For example, these situations occur if the publisher sends an event and doesn’t receive the
acknowledgment (e.g. due to a network issue). In this case, the publisher will try to send the same
event again. This leads to two identical events in the event bus which have to be processed by the
consumers. Similar conditions can appear on consumer side: an event has been processed
successfully, but the consumer fails to confirm the processing.

SHOULD design for idempotent out-of-order
processing
Events that are designed for idempotent out-of-order processing allow for extremely resilient
systems: If processing an event fails, consumers and producers can skip/delay/retry it without
stopping the world or corrupting the processing result.

To enable this freedom of processing, you must explicitly design for idempotent out-of-order
processing: Either your events must contain enough information to infer their original order
during consumption or your domain must be designed in a way that order becomes irrelevant.

As common example similar to data change events, idempotent out-of-order processing can be
supported by sending the following information:

98

• the process/resource/entity identifier,

• a monotonically increasing ordering key and

• the process/resource state after the change.

A receiver that is interested in the current state can then ignore events that are older than the last
processed event of each resource. A receiver interested in the history of a resource can use the
ordering key to recreate a (partially) ordered sequence of events.

MUST ensure that events define useful business
resources
Events are intended to be used by other services including business process/data analytics and
monitoring. They should be based around the resources and business processes you have defined
for your service domain and adhere to its natural lifecycle (see also SHOULD model complete
business processes and SHOULD define useful resources).

As there is a cost in creating an explosion of event types and topics, prefer to define event types that
are abstract/generic enough to be valuable for multiple use cases, and avoid publishing event types
without a clear need.

SHOULD ensure that data change events match the
APIs resources
A data change event’s representation of an entity should correspond to the REST API
representation.

There’s value in having the fewest number of published structures for a service. Consumers of the
service will be working with fewer representations, and the service owners will have less API
surface to maintain. In particular, you should only publish events that are interesting in the
domain and abstract away from implementation or local details - there’s no need to reflect every
change that happens within your system.

There are cases where it could make sense to define data change events that don’t directly
correspond to your API resource representations. Some examples are -

• Where the API resource representations are very different from the datastore representation,
but the physical data are easier to reliably process for data integration.

• Publishing aggregated data. For example a data change to an individual entity might cause an
event to be published that contains a coarser representation than that defined for an API

• Events that are the result of a computation, such as a matching algorithm, or the generation of
enriched data, and which might not be stored as entity by the service.

MUST maintain backwards compatibility for events
Changes to events must be based around making additive and backward compatible changes. This

99

follows the guideline, "Must: Don’t Break Backward Compatibility" from the REST Design -
Compatibility guidelines.

In the context of events, compatibility issues are complicated by the fact that producers and
consumers of events are highly asynchronous and can’t use content-negotiation techniques that are
available to REST style clients and servers. This places a higher bar on producers to maintain
compatibility as they will not be in a position to serve versioned media types on demand.

For event schema, these are considered backward compatible changes, as seen by consumers -

• Adding new optional fields to JSON objects.

• Changing the order of fields (field order in objects is arbitrary).

• Changing the order of values with same type in an array.

• Removing optional fields.

• Removing an individual value from an enumeration.

These are considered backwards-incompatible changes, as seen by consumers -

• Removing required fields from JSON objects.

• Changing the default value of a field.

• Changing the type of a field, object, enum or array.

• Changing the order of values with different type in an array (also known as a tuple).

• Adding a new optional field to redefine the meaning of an existing field (also known as a co-
occurrence constraint).

• Adding a value to an enumeration

Appendix A: References
This section collects links to documents to which we refer, and base our guidelines on.

OpenAPI specification
• OpenAPI specification

• OpenAPI specification mind map

Publications, specifications and standards
• RFC 3339: Date and Time on the Internet: Timestamps

• RFC 4122: A Universally Unique IDentifier (UUID) URN Namespace

• RFC 4627: The application/json Media Type for JavaScript Object Notation (JSON)

• RFC 8288: Web Linking

• RFC 6585: Additional HTTP Status Codes

100

https://github.com/OAI/OpenAPI-Specification/
https://openapi-map.apihandyman.io/
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc4627
https://tools.ietf.org/html/rfc8288
https://tools.ietf.org/html/rfc6585

• RFC 6902: JavaScript Object Notation (JSON) Patch

• RFC 7159: The JavaScript Object Notation (JSON) Data Interchange Format

• RFC 7230: Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing

• RFC 7231: Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content

• RFC 7232: Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests

• RFC 7233: Hypertext Transfer Protocol (HTTP/1.1): Range Requests

• RFC 7234: Hypertext Transfer Protocol (HTTP/1.1): Caching

• RFC 7240: Prefer Header for HTTP

• RFC 7396: JSON Merge Patch

• RFC 7807: Problem Details for HTTP APIs

• RFC 4648: The Base16, Base32, and Base64 Data Encodings

• ISO 8601: Date and time format

• ISO 3166-1 alpha-2: Two letter country codes

• ISO 639-1: Two letter language codes

• ISO 4217: Currency codes

• BCP 47: Tags for Identifying Languages

Dissertations
• Roy Thomas Fielding - Architectural Styles and the Design of Network-Based Software

Architectures: This is the text which defines what REST is.

Books
• REST in Practice: Hypermedia and Systems Architecture

• Build APIs You Won’t Hate

• InfoQ eBook - Web APIs: From Start to Finish

Blogs
• Lessons-learned blog: Thoughts on RESTful API Design

Appendix B: Tooling
This is not a part of the actual guidelines, but might be helpful for following them. Using a tool
mentioned here doesn’t automatically ensure you follow the guidelines.

101

https://tools.ietf.org/html/rfc6902
https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7232
https://tools.ietf.org/html/rfc7233
https://tools.ietf.org/html/rfc7234
https://tools.ietf.org/html/rfc7240
https://tools.ietf.org/html/rfc7396
https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc4648
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/ISO_4217
https://tools.ietf.org/html/bcp47
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.amazon.de/REST-Practice-Hypermedia-Systems-Architecture/dp/0596805829
https://leanpub.com/build-apis-you-wont-hate
http://www.infoq.com/minibooks/emag-web-api
http://restful-api-design.readthedocs.org/en/latest/

API first integrations
The following frameworks were specifically designed to support the API First workflow with
OpenAPI YAML files (sorted alphabetically):

• Connexion: OpenAPI First framework for Python on top of Flask

• Friboo: utility library to write microservices in Clojure with support for Swagger and OAuth

• Api-First-Hand: API-First Play Bootstrapping Tool for Swagger/OpenAPI specs

• Swagger Codegen: template-driven engine to generate client code in different languages by
parsing Swagger Resource Declaration

• Swagger Codegen Tooling: plugin for Maven that generates pieces of code from OpenAPI
specification

• Swagger Plugin for IntelliJ IDEA: plugin to help you easily edit Swagger specification files
inside IntelliJ IDEA

The Swagger/OpenAPI homepage lists more Community-Driven Language Integrations, but most of
them do not fit our API First approach.

Support libraries
These utility libraries support you in implementing various parts of our RESTful API guidelines
(sorted alphabetically):

• Problem: Java library that implements application/problem+json

• Problems for Spring Web MVC: library for handling Problems in Spring Web MVC

• Jackson Datatype Money: extension module to properly support datatypes of javax.money

• Tracer: call tracing and log correlation in distributed systems

• TWINTIP Spring Integration: API discovery endpoint for Spring Web MVC

Appendix C: Best practices
The best practices presented in this section are not part of the actual guidelines, but should provide
guidance for common challenges we face when implementing RESTful APIs.

Cursor-based pagination in RESTful APIs
Cursor-based pagination is a very powerful and valuable technique (see also MAY use cursor-based
pagination, prefer offset-based pagination, that allows to efficiently provide a stable view on
changing data. This is obtained by using an anchor element that allows to retrieve all page elements
directly via an ordering combined-index, usually based on created_at or modified_at. Simple said,
the cursor is the information set needed to reconstruct the database query to retrieves the minimal
page information from the data storage.

The cursor itself is an opaque string, transmitted forth and back between service and clients, that

102

https://github.com/zalando/connexion
https://github.com/zalando-stups/friboo
https://github.com/zalando/api-first-hand
https://github.com/swagger-api/swagger-codegen
https://github.com/zalando-stups/swagger-codegen-tooling
https://github.com/zalando/intellij-swagger
http://swagger.io/open-source-integrations/
https://github.com/zalando/problem
https://github.com/zalando/problem-spring-web
https://github.com/zalando/jackson-datatype-money
https://github.com/zalando/tracer
https://github.com/zalando/twintip-spring-web
#cursor

must never be inspected or constructed by clients. Therefore, it is good practice to encode
(encrypt) its content in a non-human-readable form.

The cursor content usually consists of a pointer to the anchor element defining the page position in
the collection, a flag whether the element is included or excluded into/from the page, the retrieval
direction, and a hash over the applied query filters (or the query filter itself) to safely re-create the
collection. It is important to note, that a cursor should be always defined in relation to the current
page to anticipate all occurring changes when progressing.

The cursor is usually defined as an encoding of the following information:

Cursor:
 descriptions: >
 Cursor structure that contains all necessary information to efficiently
 retrieve a page from the data store.
 type: object
 properties:
 position:
 description: >
 Object containing the keys pointing to the anchor element that is
 defining the collection resource page. Normally the position is given
 by the first or the last page element. The position object contains all
 values required to access the element efficiently via the ordered,
 combined index, e.g `modified_at`, `id`.
 type: object
 properties: ...

 element:
 description: >
 Flag whether the anchor element, which is pointed to by the `position`,
 should be *included* or *excluded* from the result set. Normally, only
 the current page includes the pointed to element, while all others are
 exclude it.
 type: string
 enum: [INCLUDED, EXCLUDED]

 direction:
 description: >
 Flag for the retrieval direction that is defining which elements to
 choose from the collection resource starting from the anchor elements
 position. It is either *ascending* or *descending* based on the
 ordering combined index.
 type: string
 enum: [ASCENDING, DESCENDING]

 query_hash:
 description: >
 Stable hash calculated over all query filters applied to create the
 collection resource that is represented by this cursor.
 type: string

103

#cursor
#cursor
#cursor

 query:
 description: >
 Object containing all query filters applied to create the collection
 resource that is represented by this cursor.
 type: object
 properties: ...

 required:
 - position
 - element
 - direction

Note: In case of complex and long search requests, e.g. when GET with body is already required, the
cursor may not be able to include the query because of common HTTP parameter size restrictions.
In this case the query filters should be transported via body - in the request as well as in the
response, while the pagination consistency should be ensured via the query_hash.

Remark: It is also important to check the efficiency of the data-access. You need to make sure that
you have a fully ordered stable index, that allows to efficiently resolve all elements of a page. If
necessary, you need to provide a combined index that includes the id to ensure the full order and
additional filter criteria to ensure efficiency.

Further reading

• Twitter

• Use the Index, Luke

• Paging in PostgreSQL

Optimistic locking in RESTful APIs

Introduction

Optimistic locking might be used to avoid concurrent writes on the same entity, which might cause
data loss. A client always has to retrieve a copy of an entity first and specifically update this one. If
another version has been created in the meantime, the update should fail. In order to make this
work, the client has to provide some kind of version reference, which is checked by the service,
before the update is executed. Please read the more detailed description on how to update
resources via PUT in the HTTP Requests Section.

A RESTful API usually includes some kind of search endpoint, which will then return a list of result
entities. There are several ways to implement optimistic locking in combination with search
endpoints which, depending on the approach chosen, might lead to performing additional requests
to get the current version of the entity that should be updated.

104

#get-with-body
#cursor
https://dev.twitter.com/rest/public/timelines
http://use-the-index-luke.com/no-offset
https://www.citusdata.com/blog/1872-joe-nelson/409-five-ways-paginate-postgres-basic-exotic
#put

ETag with If-Match header

An ETag can only be obtained by performing a GET request on the single entity resource before the
update, i.e. when using a search endpoint an additional request is necessary.

Example:

< GET /orders

> HTTP/1.1 200 OK
> {
> "items": [
> { "id": "O0000042" },
> { "id": "O0000043" }
>]
> }

< GET /orders/BO0000042

> HTTP/1.1 200 OK
> ETag: osjnfkjbnkq3jlnksjnvkjlsbf
> { "id": "BO0000042", ... }

< PUT /orders/O0000042
< If-Match: osjnfkjbnkq3jlnksjnvkjlsbf
< { "id": "O0000042", ... }

> HTTP/1.1 204 No Content

Or, if there was an update since the GET and the entity’s ETag has changed:

> HTTP/1.1 412 Precondition failed

Pros

• RESTful solution

Cons

• Many additional requests are necessary to build a meaningful front-end

ETags in result entities

The ETag for every entity is returned as an additional property of that entity. In a response
containing multiple entities, every entity will then have a distinct ETag that can be used in
subsequent PUT requests.

In this solution, the etag property should be readonly and never be expected in the PUT request

105

https://tools.ietf.org/html/rfc7232#section-2.3
#get
#get
https://tools.ietf.org/html/rfc7232#section-2.3
https://tools.ietf.org/html/rfc7232#section-2.3
#put
#put

payload.

Example:

< GET /orders

> HTTP/1.1 200 OK
> {
> "items": [
> { "id": "O0000042", "etag": "osjnfkjbnkq3jlnksjnvkjlsbf", "foo": 42, "bar": true
},
> { "id": "O0000043", "etag": "kjshdfknjqlowjdsljdnfkjbkn", "foo": 24, "bar":
false }
>]
> }

< PUT /orders/O0000042
< If-Match: osjnfkjbnkq3jlnksjnvkjlsbf
< { "id": "O0000042", "foo": 43, "bar": true }

> HTTP/1.1 204 No Content

Or, if there was an update since the GET and the entity’s ETag has changed:

> HTTP/1.1 412 Precondition failed

Pros

• Perfect optimistic locking

Cons

• Information that only belongs in the HTTP header is part of the business objects

Version numbers

The entities contain a property with a version number. When an update is performed, this version
number is given back to the service as part of the payload. The service performs a check on that
version number to make sure it was not incremented since the consumer got the resource and
performs the update, incrementing the version number.

Since this operation implies a modification of the resource by the service, a POST operation on the
exact resource (e.g. POST /orders/O0000042) should be used instead of a PUT.

In this solution, the version property is not readonly since it is provided at POST time as part of the
payload.

Example:

106

#get
https://tools.ietf.org/html/rfc7232#section-2.3
#post
#put
#post

< GET /orders

> HTTP/1.1 200 OK
> {
> "items": [
> { "id": "O0000042", "version": 1, "foo": 42, "bar": true },
> { "id": "O0000043", "version": 42, "foo": 24, "bar": false }
>]
> }

< POST /orders/O0000042
< { "id": "O0000042", "version": 1, "foo": 43, "bar": true }

> HTTP/1.1 204 No Content

or if there was an update since the GET and the version number in the database is higher than the
one given in the request body:

> HTTP/1.1 409 Conflict

Pros

• Perfect optimistic locking

Cons

• Functionality that belongs into the HTTP header becomes part of the business object

• Using POST instead of PUT for an update logic (not a problem in itself, but may feel unusual for
the consumer)

Last-Modified / If-Unmodified-Since

In HTTP 1.0 there was no ETag and the mechanism used for optimistic locking was based on a date.
This is still part of the HTTP protocol and can be used. Every response contains a Last-Modified
header with a HTTP date. When requesting an update using a PUT request, the client has to provide
this value via the header If-Unmodified-Since. The server rejects the request, if the last modified
date of the entity is after the given date in the header.

This effectively catches any situations where a change that happened between GET and PUT would be
overwritten. In the case of multiple result entities, the Last-Modified header will be set to the latest
date of all the entities. This ensures that any change to any of the entities that happens between GET
and PUT will be detectable, without locking the rest of the batch as well.

Example:

< GET /orders

107

#get
#post
https://tools.ietf.org/html/rfc7232#section-2.3
https://tools.ietf.org/html/rfc7232#section-2.2
#put
https://tools.ietf.org/html/rfc7232#section-3.4
#get
#put
https://tools.ietf.org/html/rfc7232#section-2.2
#get
#put

> HTTP/1.1 200 OK
> Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT
> {
> "items": [
> { "id": "O0000042", ... },
> { "id": "O0000043", ... }
>]
> }

< PUT /block/O0000042
< If-Unmodified-Since: Wed, 22 Jul 2009 19:15:56 GMT
< { "id": "O0000042", ... }

> HTTP/1.1 204 No Content

Or, if there was an update since the GET and the entities last modified is later than the given date:

> HTTP/1.1 412 Precondition failed

Pros

• Well established approach that has been working for a long time

• No interference with the business objects; the locking is done via HTTP headers only

• Very easy to implement

• No additional request needed when updating an entity of a search endpoint result

Cons

• If a client communicates with two different instances and their clocks are not perfectly in sync,
the locking could potentially fail

Conclusion

We suggest to either use the ETag in result entities or Last-Modified / If-Unmodified-Since approach.

Appendix D: Changelog
This change log only contains major changes and lists major changes since October 2016.

Non-major changes are editorial-only changes or minor changes of existing guidelines, e.g. adding
new error code or specific example. Major changes are changes that come with additional
obligations, or even change an existing guideline obligation. Major changes are listed as "Rule
Changes" below.

Hint: Most recent major changes might be missing in the list since we update it only occasionally,
not with each pull request, to avoid merge commits. Please have a look at the commit list in Github

108

#get
https://tools.ietf.org/html/rfc7232#section-2.3
https://tools.ietf.org/html/rfc7232#section-2.2
https://tools.ietf.org/html/rfc7232#section-3.4
https://github.com/linz/restful-api-guidelines/commits/main

to see a list of all changes.

Rule Changes
• 2021-12-09: event id must not change in retry situations when producers MUST use unique

event identifiers.

• 2021-11-24: restructuring of the document and some rules.

• 2021-10-18: new rule SHOULD use content negotiation, if clients may choose from different
resource representations.

• 2021-10-12: improve clarity on PATCH usage in rule MUST use HTTP methods correctly.

• 2021-08-24: improve clarity on PUT usage in rule MUST use HTTP methods correctly.

• 2021-08-24: only use codes registered via IANA in rule MUST use official HTTP status codes.

• 2021-08-17: update formats per OpenAPI 3.1 in MUST use standard data formats.

• 2021-06-22: MUST use standard data formats changed from SHOULD to MUST; consistency for
rules around standards for data.

• 2021-06-03: MUST secure API with clear distinction of OpenAPI security schemes, favoring
bearer to oauth2.

• 2021-06-01: resolve uncertainties around 'occurred_at' semantics of event metadata.

• 2021-05-25: SHOULD use standard media types with API endpoint versioning as only custom
media type usage exception.

• 2021-05-05: define usage on resource-ids in PUT and POST in MUST use HTTP methods correctly.

• 2021-04-29: improve clarity of MAY use standard headers.

• 2021-03-19: clarity on MUST use JSON as payload data interchange format.

• 2021-03-15: MUST provide explicit event ordering for data change events changed from
SHOULD to MUST; improve clarity around event ordering.

• 2021-03-19: best practice section Cursor-based pagination in RESTful APIs

• 2021-02-16: define how to reference models outside the api in MUST only use durable and
immutable remote references.

• 2021-02-15: improve guideline MUST support problem JSON (Under Construction) — clients
must be prepared to not receive problem return objects.

• 2021-01-19: more details for GET with body and DELETE with body (MUST use HTTP methods
correctly).

• 2020-09-29: include models for headers to be included by reference in API definitions (SHOULD
use only the specified LINZ headers)

• 2020-09-08: add exception for legacy host names to MUST follow naming convention for
hostnames (Under Construction)

• 2020-08-25: change SHOULD declare enum values using UPPER_SNAKE_CASE string from MUST
to SHOULD, explain exceptions

• 2020-08-25: add exception for self to MUST identify resources and sub-resources via path

109

#patch
#put
#put
#post
#get-with-body
#delete-with-body

segments.

• 2020-08-24: change "MUST avoid trailing slashes" to MUST use normalized paths without empty
path segments and trailing slashes.

• 2020-08-20: change SHOULD use only the specified LINZ headers from MUST to SHOULD,
mention gateway-specific headers (which are not part of the public API).

• 2020-06-30: add details to MUST not use media type versioning

• 2020-05-19: new sections about DELETE with query parameters and DELETE with body in MUST
use HTTP methods correctly.

• 2020-02-06: new rule MAY expose compound keys as resource identifiers

• 2020-02-05: add Sunset header, clarify deprecation producedure (MUST obtain approval of
clients before API shut down, MUST collect external partner consent on deprecation time span,
MUST reflect deprecation in API specifications, MUST monitor usage of deprecated API
scheduled for sunset, SHOULD add Deprecation and Sunset header to responses, SHOULD add
monitoring for Deprecation and Sunset header, MUST not start using deprecated APIs)

• 2020-01-21: new rule SHOULD declare enum values using UPPER_SNAKE_CASE string (as MUST,
changed later to SHOULD)

• 2020-01-15: change "Warning" to "Deprecation" header in SHOULD add Deprecation and Sunset
header to responses, SHOULD add monitoring for Deprecation and Sunset header.

• 2019-10-10: remove never-implemented rule "MUST Permissions on events must correspond to
API permissions"

• 2019-09-10: remove duplicated rule "MAY Standards could be used for Language, Country and
Currency", upgrade MUST use standard formats for country, language and currency properties
from MAY to SHOULD.

• 2019-08-29: new rule MUST encode binary data in base64url, extend MUST use JSON as payload
data interchange format pointing to RFC-7493

• 2019-08-29: new rules SHOULD design simple query languages using query parameters,
SHOULD design complex query languages using JSON

• 2019-07-30: new rule MUST use standard data formats

• 2019-07-30: change MUST use the common money object from SHOULD to MUST

• 2019-07-30: change "SHOULD Null values should have their fields removed to" MUST use same
semantics for null and absent properties.

• 2019-07-25: new rule SHOULD name date/time properties with At suffix.

• 2019-07-18: improved cursor guideline for GET with body.

• 2019-06-25: change MUST define collection format of header and query parameters from
SHOULD to MUST, use OpenAPI 3 syntax

• 2019-06-13: remove X-App-Domain from SHOULD use only the specified LINZ headers.

• 2019-05-17: add X-Mobile-Advertising-Id to SHOULD use only the specified LINZ headers.

• 2019-04-09 New rule MUST only use durable and immutable remote references

• 2019-02-19: New rule MUST support X-LINZ-Correlation-Id extracted + expanded from SHOULD

110

#delete-with-body
https://tools.ietf.org/html/rfc7493
#get-with-body

use only the specified LINZ headers.

• 2019-01-24: Improve guidance on caching (MUST fulfill common method properties, MUST
document cacheable GET, HEAD, and POST endpoints).

• 2019-01-21: Improve guidance on idempotency, introduce idempotency-key (SHOULD consider
to design POST and PATCH idempotent, SHOULD use secondary key for idempotent POST design).

• 2019-01-16: Change SHOULD not use /api as base path from MAY to {SHOULD NOT}

• 2018-10-19: Add ordering_key_field to event type definition schema (MUST specify and register
events as event types, SHOULD provide explicit event ordering for general events)

• 2018-09-28: New rule MUST use URL-friendly resource identifiers

• 2018-09-13: replaced OpenAPI 2.0 syntax with OpenAPI 3.0 in the example snippets

• 2018-08-10: New rule MUST document implicit response filtering

• 2018-07-12: Add audience field to event type definition (MUST specify and register events as
event types)

• 2018-06-11: Introduced new naming guidelines for host, permission, and event names.

• 2018-01-10: Moved meta information related aspects into new chapter REST Basics - Meta
information.

• 2018-01-09: Changed publication requirements for API specifications (MUST publish OpenAPI
specification).

• 2017-12-07: Added best practices section including discussion about optimistic locking
approaches.

• 2017-11-28: Changed OAuth flow example from password to client credentials in REST Basics -
Security.

• 2017-11-22: Updated description of X-Tenant-ID header field

• 2017-08-22: Migration to Asciidoc

• 2017-07-20: Be more precise on client vs. server obligations for compatible API extensions.

• 2017-06-06: Made money object guideline clearer.

• 2017-05-17: Added guideline on query parameter collection format.

• 2017-05-10: Added the convention of using RFC2119 to describe guideline levels, and replaced
book.could with book.may.

• 2017-03-30: Added rule that permissions on resources in events must correspond to permissions
on API resources

• 2017-03-30: Added rule that APIs should be modelled around business processes

• 2017-02-28: Extended information about how to reference sub-resources and the usage of
composite identifiers in the MUST identify resources and sub-resources via path segments part.

• 2017-02-22: Added guidance for conditional requests with If-Match/If-None-Match

• 2017-02-02: Added guideline for batch and bulk request

• 2017-02-01: SHOULD use Location header instead of Content-Location header

• 2017-01-18: Removed "Avoid Javascript Keywords" rule

111

• 2017-01-05: Clarification on the usage of the term "REST/RESTful"

• 2016-12-07: Introduced "API as a Product" principle

• 2016-12-06: New guideline: "Should Only Use UUIDs If Necessary"

• 2016-12-04: Changed OAuth flow example from implicit to password in REST Basics - Security.

• 2016-10-13: SHOULD use standard media types

• 2016-10-10: Introduced the changelog. From now on all rule changes on API guidelines will be
recorded here.

<!-- Adds rule id as a postfix to all rule titles -->
<script>
var ruleIdRegEx = /(\d)+/;
var h3headers = document.getElementsByTagName("h3");
for (var i = 0; i < h3headers.length; i++) {
 var header = h3headers[i];
 if (header.id && header.id.match(ruleIdRegEx)) {
 var a = header.getElementsByTagName("a")[0]
 a.innerHTML += " [" + header.id + "]";
 }
}
</script>

<!-- Add table of contents anchor and remove document title -->
<script>
var toc = document.getElementById('toc');
var div = document.createElement('div');
div.id = 'table-of-contents';
toc.parentNode.replaceChild(div, toc);
div.appendChild(toc);
var ul = toc.childNodes[3];
ul.removeChild(ul.childNodes[1]);
</script>

<!-- Adds sidebar navigation -->
<script>
var header = document.getElementById('header');
var nav = document.createElement('div');
nav.id = 'toc';
nav.classList.add('toc2');
var title = document.createElement('div');
title.id = 'toctitle';

var link = document.createElement('a');
link.innerText = 'API Guidelines';
link.href = '#';

title.append(link);
nav.append(title);

var ul = document.createElement('ul');

112

ul.classList.add('sectlevel1');

var link = document.createElement('a');
link.innerHTML = 'Table of Contents';
link.href = '#table-of-contents';
li = document.createElement('li');
li.append(link);
ul.append(li);

var link, li;
var h2headers = document.getElementsByTagName('h2');
for (var i = 1; i < h2headers.length; i++) {
 var a = h2headers[i].getElementsByTagName("a")[0];
 if (a !== undefined) {
 link = document.createElement('a');
 link.innerHTML = a.innerHTML;
 link.href = a.hash;
 li = document.createElement('li');
 li.append(link);
 ul.append(li);
 }
}

document.body.classList.add('toc2');
document.body.classList.add('toc-left');
nav.append(ul);
header.prepend(nav);
</script>

<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-130687305-1"></script>
<script>
 window.dataLayer = window.dataLayer || [];
 function gtag(){dataLayer.push(arguments);}
 gtag('js', new Date());

 gtag('config', 'UA-130687305-1');

 (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
 (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
 m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
 })(window,document,'script','https://www.google-analytics.com/analytics.js','ga');
 ga('create', 'UA-130687305-1', 'auto');

 function trackPageview() {
 var title = (location.hash && location.hash.length > 0) ?
 document.getElementById(location.hash.replace('#','')).textContent :
 document.title;

 ga('send', 'pageview', {'page': location.pathname + location.hash, 'title': title});
 }

113

 if ("onhashchange" in window)
 window.onhashchange = trackPageview;

 trackPageview(); // track user's first pageview
</script>

<!-- Cookies Consent -->
<link rel="stylesheet" type="text/css"
href="https://cdnjs.cloudflare.com/ajax/libs/cookieconsent2/3.1.0/cookieconsent.min.css"
/>
<script
src="https://cdnjs.cloudflare.com/ajax/libs/cookieconsent2/3.1.0/cookieconsent.min.js"></s
cript>
<script>
window.addEventListener("load", function(){
window.cookieconsent.initialise({
 "palette": {
 "popup": {
 "background": "#eaf7f7",
 "text": "#5c7291"
 },
 "button": {
 "background": "#56cbdb",
 "text": "#ffffff"
 }
 },
 "content": {
 "message": "This web site uses cookies to analyze the general behavior of visitors."
 }
})});
</script>

[1] Per definition of R.Fielding REST APIs have to support HATEOAS (maturity level 3). Our guidelines do not strongly advocate for
full REST compliance, but limited hypermedia usage, e.g. for pagination (see REST Design - Hypermedia). However, we still use the
term "RESTful API", due to the absence of an alternative established term and to keep it like the very majority of web service
industry that also use the term for their REST approximations — in fact, in today’s industry full HATEOAS compliant APIs are a
very rare exception.

[2] HTTP/1.1 standard (RFC 7230) defines two types of headers: end-to-end and hop-by-hop headers. End-to-end headers must be
transmitted to the ultimate recipient of a request or response. Hop-by-hop headers, on the contrary, are meaningful for a single
connection only.

114

https://tools.ietf.org/html/rfc7230#section-6.1

	Untitled
	Linz Step RESTful API and Event Guidelines
	Table of Contents
	1. Introduction
	Conventions used in these guidelines
	Zalando specific information

	2. Principles
	API design principles
	API as a product
	API first

	3. General guidelines
	SHOULD follow API first principle
	MUST provide API specification using OpenAPI
	MAY provide API user manual
	MUST write APIs using U.S. English
	MUST only use durable and immutable remote references

	4. REST Basics - Meta information
	MUST contain API meta information
	MUST use semantic versioning
	MUST provide API identifiers
	MUST provide API audience
	MUST follow naming convention for hostnames (Under Construction)
	MUST Provide Gateway Upstream Targets
	MAY Provide Gateway Upstream Targets for postprod env
	MUST provide server url
	MAY provide optional environment postprod for server url
	MUST follow the API endpoints design consideration

	5. REST Basics - Security
	MUST secure API
	MUST define and assign permissions (scopes)

	6. REST Basics - Data formats
	MUST use standard data formats
	MUST define a format for number and integer types
	MUST use standard formats for date and time properties
	SHOULD use standard formats for time duration and interval properties
	MUST use standard formats for country, language and currency properties
	SHOULD use content negotiation, if clients may choose from different resource representations
	SHOULD only use UUIDs if necessary

	7. REST Basics - URLs
	MUST be a resource and not a namespace as the basepath.
	SHOULD not use /api as base path
	MUST use URL-friendly resource identifiers
	MUST use kebab-case for path segments
	MUST use normalized paths without empty path segments and trailing slashes
	MUST keep URLs verb-free
	MUST avoid actions — think about resources
	SHOULD define useful resources
	MUST use domain-specific resource names
	SHOULD model complete business processes
	MUST identify resources and sub-resources via path segments
	MAY expose compound keys as resource identifiers
	MAY consider using (non-) nested URLs
	SHOULD limit number of resource types
	SHOULD limit number of sub-resource levels
	MUST use camelCase (never snake_case) for query parameters
	MUST stick to conventional query parameters

	8. REST Basics - JSON payload
	MUST use JSON as payload data interchange format
	MAY pass non-JSON media types using data specific standard formats
	SHOULD use standard media types
	SHOULD pluralize array names
	MUST property names must be camelCase (and never snake_case)
	SHOULD declare enum values using UPPER_SNAKE_CASE string
	SHOULD name date/time properties with At suffix
	SHOULD define maps using additionalProperties
	MUST use same semantics for null and absent properties
	MUST not use null for boolean properties
	SHOULD not use null for empty arrays
	MUST use common field names and semantics
	MUST use the common address fields
	MUST use the common money object

	9. REST Basics - HTTP requests
	MUST use HTTP methods correctly
	MUST fulfill common method properties
	SHOULD consider to design POST and PATCH idempotent
	SHOULD use secondary key for idempotent POST design
	MUST define collection format of header and query parameters
	SHOULD design simple query languages using query parameters
	SHOULD design complex query languages using JSON
	MUST document implicit response filtering

	10. REST Basics - HTTP status codes
	MUST use official HTTP status codes
	MUST specify success and error responses
	SHOULD only use most common HTTP status codes
	MUST use most specific HTTP status codes
	MUST use code 207 for batch or bulk requests
	MUST use code 429 with headers for rate limits
	MUST support problem JSON (Under Construction)
	MUST not expose stack traces

	11. REST Basics - HTTP headers
	MAY use standard headers
	SHOULD use kebab-case with uppercase separate words for HTTP headers
	MUST use Content-* headers correctly
	SHOULD use Location header instead of Content-Location header
	MAY use Content-Location header
	MAY consider to support Prefer header to handle processing preferences
	MAY consider to support ETag together with If-Match/If-None-Match header
	MAY consider to support Idempotency-Key header
	SHOULD use only the specified LINZ headers
	MUST propagate proprietary headers
	MUST support X-LINZ-Correlation-Id

	12. REST Design - Hypermedia
	MUST use REST maturity level 2
	MAY use REST maturity level 3 - HATEOAS
	MUST use common hypertext controls
	SHOULD use simple hypertext controls for pagination and self-references
	MUST use full, absolute URI for resource identification
	MUST not use link headers with JSON entities

	13. REST Design - Performance
	SHOULD reduce bandwidth needs and improve responsiveness
	SHOULD use gzip compression
	MAY support partial responses via filtering
	MAY allow optional embedding of sub-resources
	MUST document cacheable GET, HEAD, and POST endpoints

	14. REST Design - Pagination
	MUST support pagination (Under Construction)
	MAY use cursor-based pagination, prefer offset-based pagination
	SHOULD use pagination response page object
	SHOULD use pagination links where applicable

	15. REST Design - Compatibility
	MUST not break backward compatibility
	SHOULD prefer compatible extensions
	SHOULD design APIs conservatively
	MUST prepare clients to accept compatible API extensions
	MUST treat OpenAPI specification as open for extension by default
	SHOULD avoid versioning
	MUST use URL versioning
	MUST not use media type versioning
	MUST always return JSON objects as top-level data structures

	16. REST Design - Deprecation
	MUST reflect deprecation in API specifications
	MUST obtain approval of clients before API shut down
	MUST collect external partner consent on deprecation time span
	MUST monitor usage of deprecated API scheduled for sunset
	SHOULD add Deprecation and Sunset header to responses
	SHOULD add monitoring for Deprecation and Sunset header
	MUST not start using deprecated APIs

	17. REST Operation
	MUST publish OpenAPI specification
	SHOULD monitor API usage

	18. EVENT Basics - Event Types (Under Construction)
	MUST define events compliant with overall API guidelines
	MUST treat events as part of the service interface
	MUST make event schema available for review
	MUST specify and register events as event types
	MUST follow naming convention for event type names
	MUST indicate ownership of event types
	MUST carefully define the compatibility mode
	MUST ensure event schema conforms to OpenAPI schema object
	SHOULD avoid additionalProperties in event type schemas
	MUST use semantic versioning of event type schemas

	19. EVENT Basics - Event Categories
	MUST ensure that events conform to an event category
	MUST provide mandatory event metadata
	MUST use unique event identifiers
	MUST use general events to signal steps in business processes
	SHOULD provide explicit event ordering for general events
	MUST use data change events to signal mutations
	MUST provide explicit event ordering for data change events
	SHOULD use the hash partition strategy for data change events

	20. EVENT Design
	SHOULD avoid writing sensitive data to events
	MUST prepare event consumers for duplicate events
	SHOULD design for idempotent out-of-order processing
	MUST ensure that events define useful business resources
	SHOULD ensure that data change events match the APIs resources
	MUST maintain backwards compatibility for events

	Appendix A: References
	OpenAPI specification
	Publications, specifications and standards
	Dissertations
	Books
	Blogs

	Appendix B: Tooling
	API first integrations
	Support libraries

	Appendix C: Best practices
	Cursor-based pagination in RESTful APIs
	Optimistic locking in RESTful APIs

	Appendix D: Changelog
	Rule Changes

